MATH BOOK THIRD EDITION

EXERCISE 12F

- 1 Find \overrightarrow{AB} given:
- **a** A(2,3) and B(4,7) **b** A(3,-1) and B(1,4) **c** A(-2,7) and B(1,4)

- **d** B(3,0) and A(2,5) **e** B(6,-1) and A(0,4) **f** B(0,0) and A(-1,-3)
- 2 Consider the point A(1, 4). Find the coordinates of:
 - **a** B given $\overrightarrow{AB} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$

- **b** C given $\overrightarrow{CA} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$.
- **3** [PQ] is the diameter of a circle with centre C.
 - a Find \overrightarrow{PC} .
 - **b** Hence find the coordinates of Q.

4

- ABCD is a parallelogram.
 - Find AB.
 - Find CD.
 - Hence find the coordinates of D.
- **5** A(-1, 3) and B(3, k) are two points which are 5 units apart.
 - a Find \overrightarrow{AB} and $|\overrightarrow{AB}|$.
 - **b** Hence, find the two possible values of k.
 - Show, by illustration, why k should have two possible values.

- \overrightarrow{AB} and \overrightarrow{AC} .
- **b** Explain why $\overrightarrow{BC} = -\overrightarrow{AB} + \overrightarrow{AC}$.
- Hence find \overrightarrow{BC} .
- Check your answer to c by direct evaluation.

7 **a** Given
$$\overrightarrow{BA} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$$
 and $\overrightarrow{BC} = \begin{pmatrix} -3 \\ 1 \end{pmatrix}$, find \overrightarrow{AC} .

b Given
$$\overrightarrow{AB} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$
 and $\overrightarrow{CA} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$, find \overrightarrow{CB} .

$$\overrightarrow{PQ} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}, \overrightarrow{RQ} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \text{ and } \overrightarrow{RS} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}, \text{ find } \overrightarrow{SP}.$$

8

a Find the coordinates of M.

b Find vectors \overrightarrow{CA} , \overrightarrow{CM} , and \overrightarrow{CB} .

• Verify that $\overrightarrow{CM} = \frac{1}{2}\overrightarrow{CA} + \frac{1}{2}\overrightarrow{CB}$.