TRIGONOMETRY - WORKSHEET

Show all working. Round off final answers to 3 s.f. unless otherwise stated.

- 1. The diagram shows a semicircle *OABC*. If the arc *AB* has length 3.2 cm, calculate
 - (a) the length of the radius,
 - (b) the length of the arc BC.

- 2. The diagram shows a sector AOB whose angle is θ radians. Find
 - (a) the value of θ if arc AB has length 14 cm,
 - **(b)** the length of the arc AB if $\theta = 0.6$,
 - (c) the area of the sector if the arc AB has length 5 cm,
 - (d) the length of the arc AB if the area of the sector is 30 cm²,
 - (e) the area of the sector if $\theta = 0.8$,
 - (f) the value of θ if the area of the sector is 50 cm².
 - 3. A sector cut from a circle of radius 3 cm has a perimeter of 12 cm. Find the area of this sector.
 - 4. A piece of wire 20 cm long is bent to form the shape of a sector. If the arc has length 8 cm, calculate the angle of the sector and the area enclosed by this sector.
 - 5. The diagram shows part of a circle, centre O, radius 10 cm. Given that the length of the arc AB is 14 cm, calculate, to 3 significant figures,
 - (a) the angle AOB in radians,
 - (b) the area of the shaded region.
 - 6. OAB is a sector of the circle, centre O, with $\angle OAC = \frac{\pi}{3}$ radians and $\angle OCA$ a right angle. Given that the arc AB has length 5 cm,
 - (a) show that OA = 9.55 cm,
 - (b) calculate the perimeter of the shaded region,
 - (c) express the area of the shaded region as a percentage of the area of the sector *OAB*.

- (a) OB,
- (b) the area of ABDC.
- 8. The diagram shows a rhombus ABCD with sides 7 cm. An arc BD, centre A, has length 5 cm. Calculate the area of the shaded region.

- 9. OAB is a sector with $\angle AOB = 0.4$ radians. C is the midpoint of OA and D lies on OB. If OC = 3 cm and the area of the shaded region is 4.5 cm^2 , calculate the length of DB.
- 10. The figure shows a circle centre O, radius 6 cm. The tangent to the circle at A meets OB produced at T. If the area of the triangle OAT is 15 cm², calculate the area and perimeter of the minor sector OAB.

- 11. OAB is a right-angled triangle with OA = 6 cm and OB = 8 cm. An arc AC is drawn with centre at O. Calculate
 - (a) the angle AOC in radians,
 - (b) the area of the shaded segment.
- 12. The diagram shows part of a circle, centre O, of radius 10 m. The tangents at the points A and B on the circumference of the circle meet at the point P and the angle AOB is 0.8 radians. Calculate
 - (a) the length of the perimeter of the shaded region,
 - (b) the area of the shaded region. (C)
- 13. The diagram shows a semicircle with centre at O. The lengths of the arcs AB, BC and CD are in the ratio 2:3:1. If the length of arc BC is 15 cm, calculate the area of the sector AOB and that of the shaded region.

- 14. A hollow cone has base radius 10 cm and height 24 cm. The cone is unrolled to form a sector of a circle. What are the angle and area of this sector?
- 15. The diagram shows three points A, B and C on a circle, centre O and radius 10 cm. The line AD is a tangent to the circle. Given that angle $AOB = 60^{\circ}$, find, to one decimal place,
 - (a) the length of the arc ACB,
 - (b) the area of the segment ACB. Given also that the length of AD equals the length of the arc ACB, find
 - (c) the area of the shaded region ACBD,
 - (d) the length of BD. (C)

