FINAL EXAM RVIEW 2012-2013

1. Mean $=\frac{(72 \times 1.79)+(28 \times 1.62)}{100}$

$$
=1.7424(=1.74 \text { to } 3 \mathrm{sf})
$$

ANSWER KEY.

(M1)(M1)(M1)
(A1) (C4)
2. $\frac{(10 \times 1)+(20 \times 2)+(30 \times 5)+(40 \times k)+(50 \times 3)}{k+11}=34$
$\frac{40 k+350}{k+11}=34$
$\Rightarrow k=4$
(M1)(A1)
(A1) (C4)
3.

(a) (i) Correct lines drawn on graph,
$(\mathrm{A} 1)(\mathrm{C} 1)$
$(\mathrm{A} 1)(\mathrm{C} 1)$
(A1)(C1)
(A1)(C1)
(M1)
(A1) (C2)
Note: Accept 14 to 24, 24 to 14, $14-24$ or 24-14.
4. (a) 3
(b) 6
(c) Recognizing the link between 6 and the upper quartile eg 25% scored greater than 6 ,
0.25×32
(A1)
8
5.
(a)
(i) $m=165$

A1 N1
(ii) Lower quartile ($1^{\text {st }}$ quarter) $=160$
Upper quartile ($3^{\text {rd }}$ quarter $)=170$ $\mathrm{IQR}=10$

$$
\mathrm{IQR}=10
$$ (A1)

(A1)
A1 N3
(b) Recognize the need to use the $40^{\text {th }}$ percentile, or $48^{\text {th }}$ student
$e g$ a horizontal line through $(0,48)$
$a=163$
A1 N2
6. (a) (i) 10
(A1)
(ii) $14+10=24$
(A1) 2
(b)

Note: Award (A0) for using the mid-interval values of 14.5, 24.5 etc.
(i) $\mu=63$
(ii) $\quad \sigma=20.5(3 \mathrm{sf})$
(c) Assymetric diagram/distribution
(d)

OR Median $=65$
(A3) 3
Note: This answer assumes appropriate use of a calculator with correct arguments.

OR Linear interpolation on the table:
(M1)

$$
\begin{equation*}
\left(\frac{48-40.5}{48-32}\right) \times 60+\left(\frac{40.5-32}{48-32}\right) \times 70=65(2 \mathrm{sf}) \tag{A1}
\end{equation*}
$$

7. (a)

	Boy	Girl	Total
TV	$\mathbf{1 3}$	$\mathbf{2 5}$	$\mathbf{3 8}$
Sport	33	29	$\mathbf{6 2}$
Total	46	$\mathbf{5 4}$	100

$$
\begin{equation*}
\mathrm{P}(\mathrm{TV})=\frac{38}{100} \tag{A1}
\end{equation*}
$$

(b) $\quad \mathrm{P}(\mathrm{TV} \mid$ Boy $)=\frac{13}{46}(=0.283$ to 3 sf$)$

Notes: Award (A1) for numerator and (A1) for denominator. Accept equivalent answers.
8. (a)

Notes: Award (M1) for probabilities $\frac{1}{6}, \frac{5}{6}$ correctly entered on diagram.
Award (M1) for correctly listing the outcomes 6, 6; 6 not 6; not 6, 6; not 6, not 6, or the corresponding probabilities.
(b) $\mathrm{P}($ one or more sixes $)=\frac{1}{6} \times \frac{1}{6}+\frac{1}{6} \times \frac{5}{6}+\frac{5}{6} \times \frac{1}{6}$ or $\left(1-\frac{5}{6} \times \frac{5}{6}\right)$

$$
\begin{equation*}
=\frac{11}{36} \tag{M1}
\end{equation*}
$$

9. (a)

(b) (i) $n(A \cap B)=2$
(ii) $\quad \mathrm{P}(A \cap B)=\frac{2}{36}\left(\right.$ or $\left.\frac{1}{18}\right)$ (allow $\mathbf{f t}$ from (b)(i))
(A1) (C1)
(A1) (C1)
(A1) (C1)
(c) $\quad n(A \cap B) \neq 0$ (or equivalent)
(R1) (C1)
10. (a) U

(A1) (C1)
(b) $n(A \cup B)=n(A)+n(B)-n(A \cap B)$
$65=30+50-n(A \cap B)$
$\Rightarrow n(A \cap B)=15$ (may be on the diagram)
$n\left(B \cap A^{\prime}\right)=50-15=35$
(M1)
(A1) (C2)
(c) $\mathrm{P}\left(B \cap A^{\prime}\right)=\frac{n\left(B \cap A^{\prime}\right)}{n(U)}=\frac{35}{100}=0.35$
(A1) (C1)
11. (a) $\mathrm{P}=\frac{22}{23}(=0.957(3 \mathrm{sf}))$
(A2) (C2)
(b)

(M1)
OR
$P=P(R R G)+P(R G R)+P(G R R)$

$$
\begin{gather*}
\frac{22}{25} \times \frac{21}{24} \times \frac{3}{23}+\frac{22}{25} \times \frac{3}{24} \times \frac{21}{23}+\frac{3}{25} \times \frac{22}{24} \times \frac{21}{23} \tag{M1}\\
=\frac{693}{2300}(=0.301(3 \mathrm{sf}))
\end{gather*}
$$

13. (a) For taking three ratios of consecutive terms

$$
\frac{54}{18}=\frac{162}{54}=\frac{486}{162}(=3)
$$

hence geometric
AG N0
(b) (i) $r=3$
(A1)
A1 N2
(M1)

A1 N2
14. Identifying the required term (seen anywhere)
$e g\binom{10}{8} \times 2^{2}$
$\binom{10}{8}=45$
$4 y^{2}, 2 \times 2,4$
$a=180$
$n=11$
2
15. (a) 7 terms
(b) A valid approach
(M1)
Correct term chosen $\binom{6}{3}\left(x^{3}\right)^{3}(-3 x)^{3}$
A1
Calculating $\binom{6}{3}=20,(-3)^{3}=-27$
(A1)(A1)

Term is $-540 x^{12}$
A1 N3
16. (a) $\log _{a} 10=\log _{a}(5 \times 2)$

$$
\begin{align*}
& =\log _{a} 5+\log _{a} 2 \tag{M1}\\
& =p+q
\end{align*}
$$

(b) $\log _{a} 8=\log _{a} 2^{3}$
(M1)

$$
\begin{aligned}
& =3 \log _{a} 2 \\
& =3 q
\end{aligned}
$$

$$
\mathrm{A} 1 \quad \mathrm{~N} 2
$$

(c) $\log _{a} 2.5=\log _{a} \frac{5}{2}$

$$
\begin{aligned}
& =\log _{a} 5-\log _{a} 2 \\
& =p-q
\end{aligned}
$$

17. (a) $\frac{1}{5}(0.2)$ A1 N1
(b) (i) $\quad u_{10}=25\left(\frac{1}{5}\right)^{9}$

$$
\begin{equation*}
=0.0000128\left(\left(\frac{1}{5}\right)^{7}, 1.28 \times 10^{-5}, \frac{1}{78125}\right) \tag{M1}
\end{equation*}
$$

A1 N 2
(ii) $\quad u_{n}=25\left(\frac{1}{5}\right)^{n-1}$

A1 N1
(c) For attempting to use infinite sum formula for a GP $\left(\frac{25}{1-\left(\frac{1}{5}\right)}\right)$

$$
S=\frac{125}{4}=31.25(=31.3 \text { to } 3 s f)
$$

$$
\mathrm{A} 1 \quad \mathrm{~N} 2
$$

18. (a) For taking an appropriate ratio of consecutive terms

$$
r=\frac{2}{3}
$$

(b) For attempting to use the formula for the $n^{\text {th }}$ term of a GP
(c) For attempting to use infinite sum formula for a GP $S=1215$
19. (a) (i) $\log _{c} 15=\log _{c} 3+\log _{c} 5$
(ii) $\log _{c} 25=2 \log _{c} 5$

$$
=2 q
$$

(b) METHOD 1

$$
\begin{aligned}
d^{\frac{1}{2}} & =6 \\
d & =36
\end{aligned}
$$

M1

METHOD 2

For changing base M1

$$
\text { eg } \begin{gathered}
\frac{\log _{10} 6}{\log _{10} d}=\frac{1}{2}, 2 \log _{10} 6=\log _{10} d \\
d=36
\end{gathered}
$$

A1 N1
20. (a) (i) $r=-2$

A1 N1
(ii) $u_{15}=-3(-2)^{14}$ $=-49152($ accept -49200$)$
(b) (i) $2,6,18$

A1 N1
(ii) $r=3$

A1 N1
(c) Setting up equation (or a sketch)

$$
\begin{align*}
& \frac{x+1}{x-3}=\frac{2 x+8}{x+1} \text { (or correct sketch with relevant information) } \\
& x^{2}+2 x+1=2 x^{2}+2 x-24 \tag{A1}\\
& x^{2}=25 \\
& x=5 \text { or } x=-5 \\
& x=-5
\end{align*}
$$

Notes: If "trial and error" is used, work must be documented with several trials shown.
Award full marks for a correct answer with this approach.
If the work is not documented, award N2 for a correct answer.
(d) (i) $\quad r=\frac{1}{2}$

A1 N1
(ii) For attempting to use infinite sum formula for a GP
$S=\frac{-8}{1-\frac{1}{2}}$
$\mathrm{S}=-16$
A1 N2
Note: Award M0AO if candidates use a value of r where $r>1$, or $r<-1$.
21. (a) $p=-\frac{1}{2}, q=2$
(A1)(A1) (C2)
or vice versa
(b) By symmetry C is midway between p, q

Note: This (M1) may be gained by implication.
$\Rightarrow x$-coordinate is $\frac{-1 / 2+2}{2}=\frac{3}{4}$
22. $(g \circ f)(x)=0 \Rightarrow 2 \cos x+1=0$
(M1)

$$
\begin{array}{r}
\Rightarrow \quad \cos x=-\frac{1}{2} \\
\quad x=\frac{2 \pi}{3}, \frac{4 \pi}{3} \tag{A1}
\end{array}
$$

Note: Accept $120^{\circ}, 240^{\circ}$.
23. (a) $f^{-1}(2) \Rightarrow 3 x+5=2$
$x=-1$
(b) $g(f(-4)=g(-12+5)$

$$
\begin{align*}
& =g(-7) \tag{A1}\\
& =2(1+7) \\
& =16
\end{align*}
$$

(A1) (C2)
24. $4 x^{2}+4 k x+9=0$

Only one solution $\Rightarrow b^{2}-4 a c=0$
$16 k^{2}-4(4)(9)=0$
$k^{2}=9$
$k= \pm 3$
But given $k>0, k=3$
OR
One solution $\Rightarrow\left(4 x^{2}+4 k x+9\right)$ is a perfect square
$4 x^{2}+4 k x+9=(2 x \pm 3)^{2}$ by inspection
given $k>0, k=3$
(A1) (C4)
25. From sketch of graph $y=4 \sin \left(3 x+\frac{\pi}{2}\right)$
or by observing $\mid \sin \theta \leq 1$.
$k>4, k<-4$
(A1)(A1)(C2)(C2)

26. (a) $f(x)=x^{2}-6 x+14$

$$
\begin{align*}
& f(x)=x^{2}-6 x+9-9+14 \tag{M1}\\
& f(x)=(x-3)^{2}+5 \tag{M1}
\end{align*}
$$

(b) Vertex is $(3,5)$
(A1)(A1)
27. (a) Correct vertical shift

Coordinates of the images (see diagram)
(A1) (A1)

(b) Asymptote: $y=-3$
(A1)
28. (a)

(A2) (C2)
(b) Minimum: $\left(1, \frac{3}{2}\right)$
(A1) (C1)
Maximum: $(2,2)$
(A1) (C1)
29. (a) $f(3)=2^{3}$
$(g \circ f)(3)=\frac{2^{3}}{2^{3}-2}$
$=\frac{8}{6}$
$(g \circ f)(3)=\frac{4}{3}$
(b) $x=\frac{y}{y-2}$
$x(y-2)=y \Rightarrow y(x-1)=2 x$
$\Rightarrow y=\frac{2 x}{(x-1)}$
$y=\frac{10}{(5-1)}=2.5$
Note: Interchanging x and y may take place at any time.
30. (a) $2 x^{2}-8 x+5=2\left(x^{2}-4 x+4\right)+5-8$
(A1)(A1)(A1)
$\Rightarrow \quad a=2, p=2, \quad q=-3$
(b) Minimum value of $2(x-2)^{2}=0$ (or minimum value occurs when $x=2$) (Ml)
\Rightarrow Minimum value of $f(x)=-3$

OR

Minimum value occurs at $(2,-3)$
(M1)(A1) (C2)
31. Discriminant $\Delta=b^{2}-4 a c\left(=(-2 k)^{2}-4\right)$
(A1)
(M2)
Note: Award (M1)(M0) for $\Delta \geq 0$.

$$
(2 k)^{2}-4>0 \Rightarrow 4 k^{2}-4>0
$$

EITHER

$$
\begin{equation*}
4 k^{2}>4\left(k^{2}>1\right) \tag{A1}
\end{equation*}
$$

OR

$$
\begin{equation*}
4(k-1)(k+1)>0 \tag{A1}
\end{equation*}
$$

OR

$$
\begin{equation*}
(2 k-2)(2 k+2)>0 \tag{A1}
\end{equation*}
$$

THEN

$k<-1$ or $k>1$
(A1)(A1) (C6)
Note: Award (A1) for $-1<k<1$.
32.
(a) (i) $x=10$
(A1) (N1)
(ii) $y=8$
(A1) (N1)
(b) (i) $6.4($ or $(0,6.4))$
(A1) (N1)
(ii) $8($ or $(8,0))$
(A1) (N1)
(c)

(A1)(A1)(A1)(A1) (N4)

$$
\text { Note: } \begin{aligned}
& \text { Award (A1) for both asymptotes } \\
& \text { correctly drawn, (A1) for both } \\
& \text { intercepts correctly marked, } \\
& \text { (A1)(A1) for each branch drawn } \\
& \text { in approximately correct } \\
& \text { positions. Asymptotes and } \\
& \text { intercepts need not be labelled. }
\end{aligned}
$$

(d) There is a vertical translation of 8 units.
(accept translation of $\binom{0}{8}$)
33. (a) $\begin{array}{ll}f(1)=3 & f(5)=3\end{array}$
(b) EITHER distance between successive maxima = period
(M1)
(AG)
OR \quad Period of $\sin k x=\frac{2 \pi}{k}$;

$$
\begin{align*}
& \text { so period }=\frac{2 \pi}{\frac{\pi}{2}} \tag{A1}\\
& =4
\end{align*}
$$

(c) EITHER $A \sin \left(\frac{\pi}{2}\right)+B=3$ and $A \sin \left(\frac{3 \pi}{2}\right)+B=-1$
$\Leftrightarrow A+B=3,-A+B=-1$
$\Leftrightarrow A=2, B=1$
OR Amplitude $=A$

$$
\begin{align*}
& A=\frac{3-(-1)}{2}=\frac{4}{2} \tag{M1}\\
& A=2
\end{align*}
$$

Midpoint value $=B$

$$
\begin{align*}
& B=\frac{3+(-1)}{2}=\frac{2}{2} \tag{M1}\\
& B=1
\end{align*}
$$

(A1) 5

Note: As the values of $A=2$ and $B=1$ are likely to be quite obvious to a bright student, do not insist on too detailed a proof.
(d) $f(x)=2 \sin \left(\frac{\pi}{2} x\right)+1$
$f^{\prime}(x)=\left(\frac{\pi}{2}\right) 2 \cos \left(\frac{\pi}{2} x\right)+0$
Note: Award (M1) for the chain rule, (A1) for $\left(\frac{\pi}{2}\right)$, (A1) for
$2 \cos \left(\frac{\pi}{2} x\right)$.
$=\pi \cos \left(\frac{\pi}{2} x\right)$
4

Notes: Since the result is given, make sure that reasoning is valid. In particular, the final (A1) is for simplifying the result of the chain rule calculation. If the preceding steps are not valid, this final mark should not be given. Beware of "fudged" results.
(e) (i) $y=k-\pi x$ is a tangent $\Rightarrow-\pi=\pi \cos \left(\frac{\pi}{2} x\right)$

$$
\begin{align*}
& \Rightarrow-1=\cos \left(\frac{\pi}{2} x\right) \tag{A1}\\
& \Rightarrow \frac{\pi}{2} x=\pi \text { or } 3 \pi \text { or } \ldots \\
& \Rightarrow x=2 \text { or } 6 \ldots \tag{A1}
\end{align*}
$$

(ii) Tangent line is: $y=-\pi(x-2)+1$

$$
\begin{align*}
& y=(2 \pi+1)-\pi x \\
& k=2 \pi+1 \tag{A1}
\end{align*}
$$

(f) $\quad f(x)=2 \Rightarrow 2 \sin \left(\frac{\pi}{2} x\right)+1=2$

$$
\begin{align*}
& \Rightarrow \sin \left(\frac{\pi}{2} x\right)=\frac{1}{2} \tag{A1}\\
& \Rightarrow \frac{\pi}{2} x=\frac{\pi}{6} \text { or } \frac{5 \pi}{6} \text { or } \frac{13 \pi}{6} \\
& x=\frac{1}{3} \text { or } \frac{5}{3} \text { or } \frac{13}{3}
\end{align*}
$$

(A1)(A1)(A1) 5
34. (a) (i) $\quad Q=\frac{1}{2}(14.6-8.2)$

$$
\begin{equation*}
=3.2 \tag{A1}
\end{equation*}
$$

(ii) $\quad P=\frac{1}{2}(14.6+8.2)$ (M0)

$$
\begin{equation*}
=11.4 \tag{A1}
\end{equation*}
$$

(b) $\quad 10=11.4+3.2 \cos \left(\frac{\pi}{6} t\right)$
so $\frac{-7}{16}=\cos \left(\frac{\pi}{6} t\right)$
therefore $\arccos \left(\frac{-7}{16}\right)=\frac{\pi}{6} t$
which gives 2.0236... $=\frac{\pi}{6} t$ or $t=3.8648 . \quad t=3.86(3 \mathrm{sf})$
(A1) 3
(c) (i) By symmetry, next time is $12-3.86 \ldots=8.135 \ldots t=8.14(3 \mathrm{sf})$
(ii) From above, first interval is $3.86<t<8.14$

This will happen again, 12 hours later, so $15.9<t<20.1$
35. (a) using the cosine rule (A2) $=b^{2}+c^{2}-2 b c \cos \hat{A}$
substituting correctly $\mathrm{BC}^{2}=65^{2}+104^{2}-2$ (65) (104) $\cos 60^{\circ}$
$=4225+10816-6760=8281$
$\Rightarrow \mathrm{BC}=91 \mathrm{~m}$
A1 3
(b) finding the area, using $\frac{1}{2} b c \sin \hat{A}$
substituting correctly, area $=\frac{1}{2}(65)(104) \sin 60^{\circ}$
$=1690 \sqrt{3}$ (Accept $p=1690)$
(c) (i) $\quad A_{1}=\left(\frac{1}{2}\right)(65)(x) \sin 30^{\circ}$
$=\frac{65 x}{4}$
AG 1
(ii) $\quad A_{2}=\left(\frac{1}{2}\right)(104)(x) \sin 30^{\circ}$
$=26 x$
A1 2
(iii) starting $A_{1}+A_{2}=A$ or substituting $\frac{65 x}{4}+26 x=1690 \sqrt{3}$
simplifying $\frac{169 x}{4}=1690 \sqrt{3}$
$x=\frac{4 \times 1690 \sqrt{3}}{169}$
A1
$\Rightarrow x=40 \sqrt{3} \quad($ Accept $q=40)$
A1 4
(d) (i) Recognizing that supplementary angles have equal sines
eg $\mathrm{AD} \mathrm{C}=180-\mathrm{ADB} \Rightarrow \sin \mathrm{AD} \mathrm{C}=\sin \mathrm{ADB}$ R1
(ii) using sin rule in $\triangle \mathrm{ADB}$ and $\triangle \mathrm{ACD}$
substituting correctly $\frac{\mathrm{BD}}{\sin 30^{\circ}}=\frac{65}{\sin \mathrm{ADB}} \Rightarrow \frac{\mathrm{BD}}{65}=\frac{\sin 30^{\circ}}{\sin \mathrm{ADB}}$
and $\frac{\mathrm{DC}}{\sin 30^{\circ}}=\frac{104}{\sin \mathrm{ADB}} \Rightarrow \frac{\mathrm{DC}}{104}=\frac{\sin 30^{\circ}}{\sin \mathrm{ADC}}$
since $\sin \mathrm{ADB}=\sin \mathrm{AD} \mathrm{C}$
$\frac{\mathrm{BD}}{65}=\frac{\mathrm{DC}}{104} \Rightarrow \frac{\mathrm{BD}}{\mathrm{DC}}=\frac{65}{104}$
$\Rightarrow \frac{\mathrm{BD}}{\mathrm{DC}}=\frac{5}{8}$
AG
[18]
36. (a) Evidence of choosing cosine rule
eg $a^{2}=b^{2}+c^{2}-2 b c \cos A$
Correct substitution
$e g(\mathrm{AD})^{2}=7.1^{2}+9.2^{2}-2(7.1)(9.2) \cos 60^{\circ}$

$$
\begin{aligned}
& (\mathrm{AD})^{2}=69.73 \\
& \quad \mathrm{AD}=8.35(\mathrm{~cm})
\end{aligned}
$$

(b) $180^{\circ}-162^{\circ}=18^{\circ}$

Evidence of choosing sine rule (M1)

Correct substitution
eg $\frac{\mathrm{DE}}{\sin 18^{\circ}}=\frac{8.35}{\sin 110^{\circ}}$

$$
\mathrm{DE}=2.75(\mathrm{~cm})
$$

A1 N2
(c) Setting up equation
$e g \frac{1}{2} a b \sin C=5.68, \frac{1}{2} \quad b h=5.68$
Correct substitution
eg $5.68=\frac{1}{2}(3.2)(7.1) \sin \mathrm{DBC}, \frac{1}{2} \times 3.2 \times h=5.68,(h=3.55)$
$\sin \mathrm{DBC}=0.5$
DBC 30° and/or 150°
A1 N2
(d) Finding A $\hat{\mathrm{B}} \mathrm{C}\left(60^{\circ}+\mathrm{D} \hat{\mathrm{B}} \mathrm{C}\right)$

Using appropriate formula
$e g(\mathrm{AC})^{2}=(\mathrm{AB})^{2}+(\mathrm{BC})^{2},(\mathrm{AC})^{2}=(\mathrm{AB})^{2}+(\mathrm{BC})^{2}-2(\mathrm{AB})$
(BC) $\cos \mathrm{ABC}$
Correct substitution (allow $\boldsymbol{F T}$ on their seen $\mathrm{A} \hat{B} C$)
$e g(A C)^{2}=9.2^{2}+3.2^{2}$
$\mathrm{AC}=9.74(\mathrm{~cm})$
A1 N3
(e) For finding area of triangle ABD
Correct substitution Area $=\frac{1}{2} \times 9.2 \times 7.1 \sin 60^{\circ}$

$$
=28.28 \ldots
$$

A1
Area of $\mathrm{ABCD}=28.28 \ldots+5.68$

$$
=34.0\left(\mathrm{~cm}^{2}\right)
$$

A1 N3
37. Note: Accept exact answers given in terms of π.
(a) Evidence of using $l=\boldsymbol{r} \theta$
$\operatorname{arc} \mathrm{AB}=7.85(\mathrm{~m})$
,
A1 N2
(b) Evidence of using $A=\frac{1}{2} r^{2} \theta$ (M1)

Area of sector $\mathrm{AOB}=58.9\left(\mathrm{~m}^{2}\right)$
A1 N2
(c) METHOD 1

angle $=\frac{\pi}{6}\left(30^{\circ}\right)$
attempt to find $15 \sin \frac{\pi}{6}$
height $=15+15 \sin \frac{\pi}{6}$
$=22.5(\mathrm{~m})$
A1 N 2
METHOD 2

angle $=\frac{\pi}{3}\left(60^{\circ}\right)$
attempt to find $15 \cos \frac{\pi}{3}$
height $=15+15 \cos \frac{\pi}{3}$
$=22.5(\mathrm{~m})$
(d) (i) $\quad h\left(\frac{\pi}{4}\right)=15-15 \cos \left(\frac{\pi}{2}+\frac{\pi}{4}\right)$

$$
=25.6(\mathrm{~m})
$$

$$
\text { A1 } \mathrm{N} 2
$$

(ii) $\quad h(0)=15-15 \cos \left(0+\frac{\pi}{4}\right)$

$$
=4.39(\mathrm{~m})
$$

A1 N 2
(iii) METHOD 1

Highest point when $h=30$
R1
$30=15-15 \cos \left(2 t+\frac{\pi}{4}\right)$
$\cos \left(2 t+\frac{\pi}{4}\right)=-1$
$t=1.18\left(\operatorname{accept} \frac{3 \pi}{8}\right)$
A1 N 2

METHOD 2

Sketch of graph of h
M2
Correct maximum indicated
(A1)
$t=1.18$
A1 N2

METHOD 3

Evidence of setting $h^{\prime}(t)=0$
$\sin \left(2 t+\frac{\pi}{4}\right)=0$
Justification of maximum R1
$e g$ reasoning from diagram, first derivative test, second derivative test

$$
t=1.18\left(\operatorname{accept} \frac{3 \pi}{8}\right)
$$

A1 N2
(e)
(i)

A1A1A1 N3
Notes: Award A1 for range -30 to 30, A1 for two zeros.
Award Al for approximate correct sinusoidal shape.
38. (a) (i) 7

A1 N1
(ii) 1

A1 N1
(iii) 10

A1 N1
(b) (i) evidence of appropriate approach
eg $A=\frac{18-2}{2}$
$A=8$
AG N0
(ii) $C=10$

A2 N 2
(iii) METHOD 1
period $=12$
evidence of using $B \times$ period $=2 \pi\left(\right.$ accept $\left.360^{\circ}\right)$
$e g 12=\frac{2 \pi}{B}$
$B=\frac{\pi}{6}($ accept $0.524 \operatorname{or} 30)$
A1 N3

METHOD 2
evidence of substituting
eg $10=8 \cos 3 B+10$
simplifying
$e g \cos 3 B=0 \quad\left(3 B=\frac{\pi}{2}\right)$
$B=\frac{\pi}{6}($ accept $0.524 \operatorname{or} 30)$
A1 N3
(c) correct answers
$e g t=3.52, t=10.5$, between 03:31 and 10:29 (accept 10:30)

