IB SL MATHEMATICS

KINEMATICS

NAME:		DATE:	DATE:	
1.	The	The velocity, v , in m s ⁻¹ of a particle moving in a straight line is given by $v = e^{3t-2}$, where <i>t</i> is the time in seconds.		
	(a)	Find the acceleration of the particle at $t = 1$.		
	(b)	At what value of t does the particle have a velocity of 22.3 m s ⁻¹ ?		
	(c)	Find the distance travelled in the first second.		
		(Tota	l 6 marks)	
2.	The s. Gi	velocity v of a particle at time t is given by $v = e^{-2t} + 12t$. The displacement of the particle at time iven that $s = 2$ when $t = 0$, express s in terms of t.	t is	
		(Tota	l 6 marks)	
3.	The	velocity $v \text{ m s}^{-1}$ of a moving body at time t seconds is given by $v = 50 - 10t$.		
	(a)	Find its acceleration in m s^{-2} .		
	(b)	The initial displacement s is 40 metres. Find an expression for s in terms of t .		
		(Tota	l 6 marks)	
4.	The	displacement s metres of a car, t seconds after leaving a fixed point A, is given by		
		$s = 10t - 0.5t^2.$		
	(a)	Calculate the velocity when $t = 0$.		
	(b)	Calculate the value of t when the velocity is zero.		
	(c)	Calculate the displacement of the car from A when the velocity is zero.		
		(Tota	l 6 marks)	

- 5. A car starts by moving from a fixed point A. Its velocity, $v \text{ m s}^{-1}$ after *t* seconds is given by $v = 4t + 5 5e^{-t}$. Let *d* be the displacement from A when t = 4.
 - (a) Write down an integral which represents *d*.
 - (b) Calculate the value of *d*.

- 6. In this question, *s* represents displacement in metres, and *t* represents time in seconds.
 - (a) The velocity $v \text{ m s}^{-1}$ of a moving body may be written as $v = \frac{ds}{dt} = 30 at$, where *a* is a constant. Given that s = 0 when t = 0, find an expression for *s* in terms of *a* and *t*. (5)

Trains approaching a station start to slow down when they pass a signal which is 200 m from the station.

- (b) The velocity of Train 1 t seconds after passing the signal is given by v = 30 5t.
 - (i) Write down its velocity as it passes the signal.
 - (ii) Show that it will stop before reaching the station.
- (c) Train 2 slows down so that it stops at the station. Its velocity is given by $v = \frac{ds}{dt} = 30 - at$, where *a* is a constant.
 - (i) Find, in terms of *a*, the time taken to stop.
 - (ii) Use your solutions to parts (a) and (c)(i) to find the value of a.

(5) (Total 15 marks)

(5)