Kinematics

NAME:
DATE: \qquad

1. The velocity, \boldsymbol{v}, in $\mathrm{m} \mathrm{s}^{-1}$ of a particle moving in a straight line is given by $v=\mathrm{e}^{3 t-2}$, where t is the time in seconds.
(a) Find the acceleration of the particle at $t=1$.
(b) At what value of t does the particle have a velocity of $22.3 \mathrm{~m} \mathrm{~s}^{-1}$?
(c) Find the distance travelled in the first second.
\qquad
2. The velocity v of a particle at time t is given by $v=\mathrm{e}^{-2 t}+12 t$. The displacement of the particle at time t is s. Given that $s=2$ when $t=0$, express s in terms of t.
\qquad
\qquad
\qquad
3. The velocity $v \mathrm{~m} \mathrm{~s}^{-1}$ of a moving body at time t seconds is given by $v=50-10 t$.
(a) Find its acceleration in $\mathrm{m} \mathrm{s}^{-2}$.
(b) The initial displacement s is 40 metres. Find an expression for s in terms of t.
\qquad
4. The displacement s metres of a car, t seconds after leaving a fixed point A , is given by

$$
s=10 t-0.5 t^{2} .
$$

(a) Calculate the velocity when $t=0$.
(b) Calculate the value of t when the velocity is zero.
(c) Calculate the displacement of the car from A when the velocity is zero.
(Total 6 marks)
5. A car starts by moving from a fixed point A. Its velocity, $v \mathrm{~m} \mathrm{~s}^{-1}$ after t seconds is given by $v=4 t+5-$ $5 \mathrm{e}^{-t}$. Let d be the displacement from A when $t=4$.
(a) Write down an integral which represents d.
(b) Calculate the value of d.
6. In this question, s represents displacement in metres, and t represents time in seconds.
(a) The velocity $v \mathrm{~m} \mathrm{~s}^{-1}$ of a moving body may be written as $v=\frac{\mathrm{d} s}{\mathrm{~d} t}=30-a t$, where a is a constant. Given that $s=0$ when $t=0$, find an expression for s in terms of a and t.

Trains approaching a station start to slow down when they pass a signal which is 200 m from the station.
(b) The velocity of Train $1 t$ seconds after passing the signal is given by $v=30-5 t$.
(i) Write down its velocity as it passes the signal.
(ii) Show that it will stop before reaching the station.
(c) Train 2 slows down so that it stops at the station. Its velocity is given by $v=\frac{\mathrm{d} s}{\mathrm{~d} t}=30-a t$, where a is a constant.
(i) Find, in terms of a, the time taken to stop.
(ii) Use your solutions to parts (a) and (c)(i) to find the value of a.

