- 1. Find t if $\log_9 t = -\frac{3}{2}$
- 2. Solve $3e^{\ln y} + 2\ln(e^y) = 10$
- 3. Solve $5^z = 4$ to 2 decimal places
- 4. Find the exact value of
 (a) $\log_4 64$ (b) $\log_a \sqrt{a}$
- 5. Solve $2^z = 5$ to 2 decimal places
- 6. Use the substitution $y = 3^x$ to solve the equation $3^{2x} 3^x = 2$ to 3 significant figures.
- 7. Solve the equation $2(3^{2x}) + 5(3^x) 3 = 0$ to 3 significant figures.
- 8. If $\log_5 x = 9$, find (without using a calculator) $\log_x 5$
- 9. If $\log_9 x = a$ and $\log_3 y = b$, express xy and $\frac{x}{y}$ as powers of 3. If xy = 243 and $\frac{x}{y} = 3$, calculate a and b.
- #10. If $\lg 4 + 2 \lg p = 2$, find p.
- 11. Find the values of x which satisfy the equation $4\log_3 x = 9 \log_x 3$
- 12. Given that $y = \log_b 45 + \log_b 25 2 \log_b 75$, express y as a single logarithm in base b. In the case when b = 5, state the value of y.
- 13. Solve the equation $\lg(1-2x) 2 \lg x = 1 \lg(2-5x)$
- 14. Solve the equation $3^{y+1} = 4^y$
- 15. Solve the equation $2\lg(x+2) + \lg 4 = \lg x + 4\lg 3$
- 16. Solve the equation $2^{2x} 2^{x+3} + 7 = 0$
- 17. Given that $x = 3^y$, y > 0, express in terms of y(a) $\log_3 x$ (b) $\log_x 3$
- 18. Solve, for x, the equation $e^{2x} 3e^x + 2 = 0$