IB Standard Level Mathematics

Trigonometry Modeling (Question Bank)

1. The diagram shows the graph of the function f given by

$$
f(x)=A \sin \left(\frac{\pi}{2} x\right)+B
$$

for $0 \leq x \leq 5$, where A and B are constants, and x is measured in radians.

The graph includes the points $(1,3)$ and $(5,3)$, which are maximum points of the graph.
(a) Write down the values of $f(1)$ and $f(5)$.
(b) Show that the period of f is 4 .

The point $(3,-1)$ is a minimum point of the graph.
(c) Show that $A=2$, and find the value of B.
(d) Show that $f^{\prime}(x)=\pi \cos \left(\frac{\pi}{2} x\right)$.

IB Standard Level Mathematics

Trigonometry Modeling (Question Bank)

The line $y=k-\pi x$ is a tangent line to the graph for $0 \leq x \leq 5$
(e) Find
(i) the point where this tangent meets the curve;
(ii) the value of k.
(f) Solve the equation $f(x)=2$ for $0 \leq x \leq 5$.
2. A formula for the depth d metres of water in a harbour at a time t hours after midnight is

$$
d=P+Q \cos \left(\frac{\pi}{6} t\right), \quad 0 \leq t \leq 24
$$

where P and Q are positive constants. In the following graph the point $(6,8.2)$ is a minimum point and the point $(12,14.6)$ is a maximum point.

(a) Find the value of
(i) Q,
(ii) P.
(b) Find the first time in the 24-hour period when the depth of the water is 10 metres.

IB Standard Level Mathematics

Trigonometry Modeling (Question Bank)

(c) (i) Use the symmetry of the graph to find the next time when the depth of the water is 10 metres.
(ii) Hence find the time intervals in the 24-hour period during which the water is less than 10 metres deep.
3. The depth, y metres, of sea water in a bay t hours after midnight may be represented by the function

$$
y=a+b \cos \left(\frac{2 \pi}{k} t\right) \text {, where } a, b \text { and } k \text { are constants. }
$$

The water is at a maximum depth of 14.3 m at midnight and noon, and is at a minimum depth of 10.3 m at 06:00 and at 18:00.

Write down the value of
(a) a;
(b) b;
(c) k.

IB Standard Level Mathematics

Trigonometry Modeling (Question Bank)

4. Part of the graph of $y=p+q \cos x$ is shown below. The graph passes through the points $(0,3)$ and $(\pi,-1)$.

Find the value of
(a) p;
(b) q.

IB Standard Level Mathematics

Trigonometry Modeling (Question Bank)

5. Let $f(x)=\sin (2 x+1), 0 \leq x \leq \pi$.
(a) Sketch the curve of $y=f(x)$ on the grid below.

(b) Find the x-coordinates of the maximum and minimum points of $f(x)$, giving your answers correct to one decimal place.

IB Standard Level Mathematics

Trigonometry Modeling (Question Bank)

6. The graph of a function of the form $y=p \cos q x$ is given in the diagram below.

(a) Write down the value of p.
(b) Calculate the value of q.
(Total 6 marks)
7. Let $f(x)=6 \sin \pi x$, and $g(x)=6 \mathrm{e}^{-x}-3$, for $0 \leq x \leq 2$. The graph of f is shown on the diagram below. There is a maximum value at $\mathrm{B}(0.5, b)$.

(a) Write down the value of b.
(b) On the same diagram, sketch the graph of g.
(c) Solve $f(x)=g(x), 0.5 \leq x \leq 1.5$.

IB Standard Level Mathematics

Trigonometry Modeling (Question Bank)

8. The diagram below shows the graph of $f(x)=1+\tan \left(\frac{x}{2}\right)$ for $-360^{\circ} \leq x \leq 360^{\circ}$.

(a) On the same diagram, draw the asymptotes.
(b) Write down
(i) the period of the function;
(ii) the value of $f\left(90^{\circ}\right)$.
(c) Solve $f(x)=0$ for $-360^{\circ} \leq x \leq 360^{\circ}$.

IB Standard Level Mathematics

Trigonometry Modeling (Question Bank)

9. The following graph shows the depth of water, y metres, at a point P , during one day.

The time t is given in hours, from midnight to noon.

(a) Use the graph to write down an estimate of the value of t when
(i) the depth of water is minimum;
(ii) the depth of water is maximum;
(iii) the depth of the water is increasing most rapidly.
(b) The depth of water can be modelled by the function $y=A \cos (B(t-1))+C$.
(i) Show that $A=8$.
(ii) Write down the value of C.
(iii) Find the value of B.
(c) A sailor knows that he cannot sail past P when the depth of the water is less than 12 m . Calculate the values of t between which he cannot sail past P .

