Trigonometry Modeling (Question Bank)

1. The diagram shows the graph of the function f given by

$$f(x) = A \sin\left(\frac{\pi}{2}x\right) + B,$$

for $0 \le x \le 5$, where *A* and *B* are constants, and *x* is measured in radians.

The graph includes the points (1, 3) and (5, 3), which are maximum points of the graph.

- (a) Write down the values of f(1) and f(5).
- (b) Show that the period of f is 4. (2)

The point (3, -1) is a minimum point of the graph.

(c) Show that A = 2, and find the value of B.

(d) Show that
$$f'(x) = \pi \cos\left(\frac{\pi}{2}x\right)$$
. (4)

(2)

(5)

The line $y = k - \pi x$ is a tangent line to the graph for $0 \le x \le 5$.

- (e) Find
 - (i) the point where this tangent meets the curve;
 - (ii) the value of k. (6)
- (f) Solve the equation f(x) = 2 for $0 \le x \le 5$.

(5) (Total 24 marks)

2. A formula for the depth *d* metres of water in a harbour at a time *t* hours after midnight is

$$d = P + Q\cos\left(\frac{\pi}{6}t\right), \quad 0 \le t \le 24,$$

where P and Q are positive constants. In the following graph the point (6, 8.2) is a minimum point and the point (12, 14.6) is a maximum point.

(a) Find the value of

- (i) *Q*;
- (ii) *P*.

(3)

(b) Find the **first** time in the 24-hour period when the depth of the water is 10 metres.

(3)

Trigonometry Modeling (Question Bank)

- (c) (i) Use the symmetry of the graph to find the **next** time when the depth of the water is 10 metres.
 - (ii) Hence find the time intervals in the 24-hour period during which the water is less than 10 metres deep.

(4)

3. The depth, *y* metres, of sea water in a bay *t* hours after midnight may be represented by the function

$$y = a + b \cos\left(\frac{2\pi}{k}t\right)$$
, where *a*, *b* and *k* are constants.

The water is at a maximum depth of 14.3 m at midnight and noon, and is at a minimum depth of 10.3 m at 06:00 and at 18:00.

Write down the value of

- (a) *a*;
- (b) *b*;
- (c) *k*.

(Total 4 marks)

Trigonometry Modeling (Question Bank)

4. Part of the graph of $y = p + q \cos x$ is shown below. The graph passes through the points (0, 3) and $(\pi, -1)$.

Find the value of

- (a) *p*;
- (b) *q*.

(Total 6 marks)

Trigonometry Modeling (Question Bank)

- 5. Let $f(x) = \sin(2x + 1), 0 \le x \le \pi$.
 - (a) Sketch the curve of y = f(x) on the grid below.

(b) Find the x-coordinates of the maximum and minimum points of f(x), giving your answers correct to one decimal place.

(Total 6 marks)

Trigonometry Modeling (Question Bank)

6. The graph of a function of the form $y = p \cos qx$ is given in the diagram below.

- (a) Write down the value of *p*.
- (b) Calculate the value of q.

(Total 6 marks)

7. Let $f(x) = 6 \sin \pi x$, and $g(x) = 6e^{-x} - 3$, for $0 \le x \le 2$. The graph of *f* is shown on the diagram below. There is a maximum value at B (0.5, *b*).

- (b) On the same diagram, sketch the graph of g.
- (c) Solve f(x) = g(x), $0.5 \le x \le 1.5$.

(Total 6 marks)

Trigonometry Modeling (Question Bank)

8. The diagram below shows the graph of $f(x) = 1 + \tan\left(\frac{x}{2}\right)$ for $-360^\circ \le x \le 360^\circ$.

(a) On the same diagram, draw the asymptotes.

- (b) Write down
 - (i) the period of the function;
 - (ii) the value of $f(90^\circ)$.
- (c) Solve f(x) = 0 for $-360^{\circ} \le x \le 360^{\circ}$.

.....

(2) (Total 6 marks)

(2)

(2)

Trigonometry Modeling (Question Bank)

9. The following graph shows the depth of water, y metres, at a point P, during one day. The time t is given in hours, from midnight to noon.

- (a) Use the graph to write down an estimate of the value of *t* when
 - (i) the depth of water is minimum;
 - (ii) the depth of water is maximum;
 - (iii) the depth of the water is increasing most rapidly.
- (b) The depth of water can be modelled by the function $y = A \cos (B (t-1)) + C$.
 - (i) Show that A = 8.
 - (ii) Write down the value of *C*.
 - (iii) Find the value of *B*.

(6)

(3)

(c) A sailor knows that he cannot sail past P when the depth of the water is less than 12 m. Calculate the values of t between which he cannot sail past P.

(2) (Total 11 marks)