IB SL MATHEMATICS

REVIEW 6

NAME: \qquad DATE: \qquad

1. Given $f(x)=x^{2}+x(2-k)+k^{2}$, find the range of values of k for which $f(x)>0$ for all real values of x.
2. Find the largest domain for the function $f: x \mapsto \frac{1}{\sqrt{4-9 x^{2}}}$.
3. The diagram shows a sketch of part of the graph of $f(x)=x^{2}$ and a sketch of part of the graph of $g(x)=-x^{2}+6 x-13$

(a) Write down the coordinates of the maximum point of $y=g(x)$.

The graph of $y=g(x)$ can be obtained from the graph of $y=f(x)$ by first reflecting the graph of $y=f(x)$, then translating the graph of $y=f(x)$.
(b) Describe fully each of these transformations, which together map the graph of $y=f(x)$ onto the graph of $y=g(x)$.
4. If $f(x)=\frac{x}{x+1}$, for $x \neq-1$ and $g(x)=(f \circ f)(x)$, find
(a) $g(x)$
(b) $(g \circ g)(2)$.
5. The function $f: x \mapsto \frac{2 x+1}{x-1}, x \in \mathbb{R}, x \neq 1$. Find the inverse function, f^{-1}, clearly stating its domain.

