Hillel Academy

Grade 12

Mathematics Study Guide September 2012 - June 2013

Examination	Month
The exam consists of 2 papers:	June
Paper 1: (1®たour and 30 Ch (inutes) non-caloulator	
Paper 2: (1 Oeur and 30 Chinutes) calculator	
Qequired material : pen, pencil, calculator and ruler	

GRADES

- The End of Year Report has 6 columns:

P1	P2	P3	P4	Exam Grade	Year Grade

- Students scoring 86% and above in the Year grade will be awarded $1^{\text {st }}$ Honours.
- Students scoring 76% and above in the Year grade will be awarded $2^{\text {nd }}$ Honours.
- The pass mark is 46%

HOW TO STUDY

\checkmark Start now! Do not wait until exam week!
\checkmark Plan your study time systematically. Set aside at least 1 hour every day to revise mathematics. On the days that you do Math try and put in at least 3 hours.
\checkmark Read your notes and your textbook and practise some of the 'Review Exercises' at the end of each chapter. Check your answers at the back of the book.
\checkmark Make sure that you understand and can apply all mathematical vocabulary.
\checkmark Remember that the showing working is very important. Many of the questions will be worth more than one mark. You will only be awarded full marks if all your work is set out clearly.
\checkmark Use your own exercise book(s) to help you revise. Go over your own work. Look at the mistakes you have made. Do you know how to do this work correctly now? If not, ask your teacher for help.

Examination

ALGEBRA

arithmetic sequences and series; sum of finite arithmetic series; geometric sequences and series; sum of finite and infinite geometric series.
Sigma notation.
Applications.

Further guidance

Technology may be used to generate and display sequences in several ways.

Link to 2.6 , exponential functions.

Examples include compound interest and population growth.
1.2 Elementary treatment of exponents and logarithms.

Laws of exponents; laws of logarithms.
Change of base.

1.3 The binomial theorem:

expansion of $(a+b)^{n}, n \in \mathbb{N}$.
Calculation of binomial coefficients using Pascal's triangle and $\binom{n}{r}$.

Not required:

formal treatment of permutations and formula for ${ }^{n} P_{r}$.

Further guidance
Examples: $16^{\frac{3}{4}}=8 ; \frac{3}{4}=\log _{16} 8$;
$\log 32=5 \log 2 ;\left(2^{3}\right)^{-4}=2^{-12}$.

Examples: $\log _{4} 7=\frac{\ln 7}{\ln 4}$,
$\log _{25} 125=\frac{\log _{5} 125}{\log _{5} 25}\left(=\frac{3}{2}\right)$.
Link to 2.6, logarithmic functions.
Counting principles may be used in the development of the theorem.
$\binom{n}{r}$ should be found using both the formula and technology.

Example: finding $\binom{6}{r}$ from inputting
$y=6^{n} C_{r} X$ and then reading coefficients from the table.
Link to 5.8, binomial distribution.

FUNCTIONS AND EQUATIONS

Content
Concept of function $f: x \mapsto f(x)$.
Domain, range; image (value).
Composite functions.
Identity function. Inverse function f^{-1}.
Not required:
domain restriction.
The graph of a function; its equation $y=f(x)$.

Function graphing skills.
Investigation of key features of graphs, such as maximum and minimum values, intercepts, horizontal and vertical asymptotes, symmetry, and consideration of domain and range.

Use of technology to graph a variety of functions, including ones not specifically mentioned.
The graph of $y=f^{-1}(x)$ as the reflection in the line $y=x$ of the graph of $y=f(x)$.
Content

Transformations of graphs.

Translations: $y=f(x)+b ; y=f(x-a)$.
Reflections (in both axes): $y=-f(x)$;
$y=f(-x)$.
Vertical stretch with scale factor $p: y=p f(x)$.
Stretch in the x-direction with scale factor $\frac{1}{q}$: $y=f(q x)$.

Composite transformations.

The quadratic function $x \mapsto a x^{2}+b x+c$: its graph, y-intercept (O, c). Axis of symmetry.
The form $x \mapsto a(x-p)(x-q)$,
x-intercepts $(p, 0)$ and $(q, 0)$.
The form $x \mapsto a(x-h)^{2}+k$, vertex (h, k).

Further guidance

Example: for $x \mapsto \sqrt{2-x}$, domain is $x \leq 2$, range is $y \geq 0$.
A graph is helpful in visualizing the range.
$(f \circ g)(x)=f(g(x))$.
$\left(f \circ f^{-1}\right)(x)=\left(f^{-1} \circ f\right)(x)=x$.
On examination papers, students will only be asked to find the inverse of a one-to-one function

Note the difference in the command terms "draw" and "sketch".

An analytic approach is also expected for simple functions, including all those listed under topic 2.
Link to 6.3, local maximum and minimum points.

Further guidance

Technology should be used to investigate these transformations.
Translation by the vector $\binom{3}{-2}$ denotes
horizontal shift of 3 units to the right, and vertical shift of 2 down.

Example: $y=x^{2}$ used to obtain $y=3 x^{2}+2$ by a stretch of scale factor 3 in the y-direction followed by a translation of $\binom{0}{2}$.

Candidates are expected to be able to change from one form to another.
Links to 2.3, transformations; 2.7, quadratic equations.

FUNCTIONS AND EQUATIONS

Content

Further guidance

The reciprocal function $x \mapsto \frac{1}{x}, x \neq 0$: its graph and self-inverse nature.

The rational function $x \mapsto \frac{a x+b}{c x+d}$ and its graph.

Vertical and horizontal asymptotes.

Exponential functions and their graphs:
$x \mapsto a^{x}, a>0, x \mapsto \mathrm{e}^{x}$.
Logarithmic functions and their graphs: $x \mapsto \log _{a} x, x>0, x \mapsto \ln x, x>0$.

Relationships between these functions:
$a^{x}=\mathrm{e}^{x \ln a} ; \log _{a} a^{x}=x ; a^{\log _{a} x}=x, x>0$.

Content

Solving equations, both graphically and analytically.
Use of technology to solve a variety of equations, including those where there is no appropriate analytic approach.

Solving $a x^{2}+b x+c=0, a \neq 0$.
The quadratic formula.
The discriminant $\Delta=b^{2}-4 a c$ and the nature of the roots, that is, two distinct real roots, two equal real roots, no real roots.
Solving exponential equations.

Applications of graphing skills and solving equations that relate to real-life situations.

Examples: $h(x)=\frac{4}{3 x-2}, x \neq \frac{2}{3}$;
$y=\frac{x+7}{2 x-5}, x \neq \frac{5}{2}$.
Diagrams should include all asymptotes and intercepts.

Links to 1.1, geometric sequences; 1.2, laws of exponents and logarithms; 2.1 , inverse functions; 2.2, graphs of inverses; and 6.1, limits.

Further guidance

Solutions may be referred to as roots of equations or zeros of functions.
Links to 2.2, function graphing skills; and 2.3 2.6, equations involving specific functions.

Examples: $\mathrm{e}^{x}=\sin x, x^{4}+5 x-6=0$.

Example: Find k given that the equation $3 k x^{2}+2 x+k=0$ has two equal real roots.

Examples: $2^{x-1}=10,\left(\frac{1}{3}\right)^{x}=9^{x+1}$.
Link to 1.2 , exponents and logarithms.
Link to 1.1 , geometric series.

Circular Functions and Trigonometry

3.1 The circle: radian measure of angles; length of an arc; area of a sector.

Further guidance

Radian measure may be expressed as exact multiples of π, or decimals.

The equation of a straight line through the origin is $y=x \tan \theta$.

Examples:

$\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}, \cos \frac{3 \pi}{4}=-\frac{1}{\sqrt{2}}, \tan 210^{\circ}=\frac{\sqrt{3}}{3}$.
3.3 The Pythagorean identity $\cos ^{2} \theta+\sin ^{2} \theta=1$. Double angle identities for sine and cosine.

Relationship between trigonometric ratios.

The circular functions $\sin x, \cos x$ and $\tan x$: their domains and ranges; amplitude, their periodic nature; and their graphs.
Composite functions of the form
$f(x)=a \sin (b(x+c))+d$.

Transformations.

Applications.

Further guidance

Simple geometrical diagrams and/or technology may be used to illustrate the double angle formulae (and other trigonometric identities).
Examples:
Given $\sin \theta$, finding possible values of $\tan \theta$ without finding θ.

Given $\cos x=\frac{3}{4}$, and x is acute, find $\sin 2 x$ without finding x.

Examples:
$f(x)=\tan \left(x-\frac{\pi}{4}\right), f(x)=2 \cos (3(x-4))+1$.
Example: $y=\sin x$ used to obtain $y=3 \sin 2 x$ by a stretch of scale factor 3 in the y-direction and a stretch of scale factor $\frac{1}{2}$ in the x-direction.
Link to 2.3, transformation of graphs.
Examples include height of tide, motion of a Ferris wheel.

Circular Functions and Trigonometry

3.5

Solving trigonometric equations in a finite interval, both graphically and analytically.

Equations leading to quadratic equations in $\sin x, \cos x$ or $\tan x$.

Not required:

the general solution of trigonometric equations.
3.6 Solution of triangles.

The cosine rule.
The sine rule, including the ambiguous case.
Area of a triangle, $\frac{1}{2} a b \sin C$.
Applications.

Fur ther guidance
Examples: $2 \sin x=1,0 \leq x \leq 2 \pi$,
$2 \sin 2 x=3 \cos x, 0^{\circ} \leq x \leq 180^{\circ}$,
$2 \tan (3(x-4))=1,-\pi \leq x \leq 3 \pi$.

Examples:

$2 \sin ^{2} x+5 \cos x+1=0$ for $0 \leq x<4 \pi$,
$2 \sin x=\cos 2 x,-\pi \leq x \leq \pi$.

Pythagoras' theorem is a special case of the cosine rule.

Link with 4.2, scalar product, noting that: $c=a-b \Rightarrow|c|^{2}=|a|^{2}+|b|^{2}-2 a \cdot b$.

Examples include navigation, problems in two and three dimensions, including angles of elevation and depression.

Statistics and Probability

Content	Further guidance
Concepts of population, sample, random sample, discrete and continuous data. Presentation of data: frequency distributions (tables; frequency histograms with equal class intervals; box-and-whisker plots; outliers.	Continuous and discrete data.
	Outlier is defined as more than $1.5 \times$ IQR from the nearest quartile. Technology may be used to produce histograms and box-and-whisker plots.
Grouped data: use of mid-interval values for calculations; interval width; upper and lower interval boundaries; modalclass.	
Not required:	
frequency density histograms.	

5.2 Statistical measures and their interpretations. Central tendency: mean, median, mode. Quartiles, percentiles.

Dispersion: range, interquartile range, variance, standard deviation.
Effect of constant changes to the original data.

Applications.

5.3 Cumulative frequency; cumulative frequency graphs; use to find median, quartiles, percentiles.

Further guidance

On examination papers, data will be treated as the population.
Calculation of mean using formula and technology. Students should use mid-interval values to estimate the mean of grouped data.

Calculation of standard deviation/variance using only technology.
Link to 2.3, transformations.

Examples:

If 5 is subtracted from all the data items, then the mean is decreased by 5 , but the standard deviation is unchanged.
If all the data items are doubled, the median is doubled, but the variance is increased by a factor of 4.

Values of the median and quartiles produced by technology may be different from those obtained from a cumulative frequency graph.

Statistics and Probability

Linear correlation of bivariate data.
Pearson's product-moment correlation coefficient r.

Scatter diagrams; lines of best fit.

Equation of the regression line of y on x. Use of the equation for prediction purposes. Mathematical and contextual interpretation.
Not required:
the coefficient of determination R^{2}.
5.5 Concepts of trial, outcome, equally likely outcomes, sample space (U) and event.

The probability of an event A is $\mathrm{P}(A)=\frac{n(A)}{n(U)}$.
The complementary events A and $A^{\prime}(\operatorname{not} A)$. Use of Venn diagrams, tree diagrams and tables of outcomes.

Further guidance

Independent variable x, dependent variable y.
Technology should be used to calculate r. However, hand calculations of r may enhance understanding.
Positive, zero, negative; strong, weak, no correlation.
The line of best fit passes through the mean point.
Technology should be used find the equation.
Interpolation, extrapolation.

The sample space can be represented diagrammatically in many ways.

Experiments using coins, dice, cards and so on, can enhance understanding of the distinction between (experimental) relative frequency and (theoretical) probability.
Simulations may be used to enhance this topic.
Links to 5.1 , frequency; 5.3, cumulative frequency.
5.6 Combined events, $\mathrm{P}(A \cup B)$.

Mutually exclusive events: $\mathrm{P}(A \cap B)=0$.
Conditional probability; the definition
$\mathbf{P}(A \mid B)=\frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)}$.
Independent events; the definition
$\mathbf{P}(A \mid B)=\mathbf{P}(A)=\mathbf{P}\left(A \mid B^{\prime}\right)$.
Probabilities with and without replacement.

Fur ther guidance

The non-exclusivity of "or".
Problems are often best solved with the aid of a Venn diagram or tree diagram, without explicit use of formulae.

