IB MATHEMATICS SL

Trigonometry Class work
NAME \qquad DATE: \qquad

1. The diagram below shows the graph of $y=-a \sin x^{\circ}+\mathrm{c}, 0 \leq x \leq 360$.

Use the graph to find the values of
(a) c;
(b) a.
(Total 4 marks)
2. (a) For $y=0.5 \cos 0.5 x$, find
(i) the amplitude;
(ii) the period.
(b) Let $y=-3 \sin x+2$, where $90^{\circ} \leq x \leq 270^{\circ}$.

By drawing the graph of y or otherwise, complete the table below for the given values of y.

x	y
	-1
	2

3. (a) A function f is represented by the following mapping diagram.

Write down the function f in the form

$$
f: x \mapsto y, \quad x \in\{\text { the domain of } f\} .
$$

(b) The function g is defined as follows

$$
g: x \mapsto \sin 15 x^{\circ}, \quad\{x \in \mathbb{N} \text { and } 0<x \leq 4\} .
$$

Complete the following mapping diagram to represent the function g.

(Total 4 marks)
4. The graph below shows part of the function $y=2 \sin x+3$.

(a) Write the domain of the part of the function shown on the graph.
(b) Write the range of the part of the function shown on the graph.
5. The graph below shows the tide heights, h metres, at time t hours after midnight, for Tahini island.

(a) Use the graph to find
(i) the height of the tide at $03: 15$;
(ii) the times when the height of the tide is 3.5 metres.
(b) The best time to catch fish is when the tide is below 3 metres. Find this best time, giving your answer as an inequality in t.

Due to the location of Tahini island, there is very little variation in the pattern of tidal heights. The maximum tide height is 4.5 metres and the minimum tide height is 1.5 metres. The height h can be modelled by the function

$$
h(t)=a \cos \left(b t^{\circ}\right)+3
$$

(c) Use the graph above to find the values of the variables a and b.
(d) Hence calculate the height of the tide at 13:00.
(e) At what time would the tide be at its lowest point in the second 8 hour period?
6. The figure below shows a hexagon with sides all of length 4 cm and with centre at O . The interior angles of the hexagon are all equal.

The interior angles of a polygon with n equal sides and n equal angles (regular polygon) add up to $(n-2) \times 180^{\circ}$.
(a) Calculate the size of angle A \hat{B} C.
(b) Given that $\mathrm{OB}=\mathrm{OC}$, find the area of the triangle OBC .
(c) Find the area of the whole hexagon.

(Total 8 marks)

7. The number of bacteria (y) present at any time is given by the formula:
$y=15000 \mathrm{e}^{-025 t}$, where t is the time in seconds and $\mathrm{e}=2.72$ correct to 3 s.f.
(a) Calculate the values of a, b and c to the nearest hundred in the table below:

Time in seconds (t)	0	1	2	3	4	5	6	7	8
Amount of bacteria (y) (nearest hundred)	a	11700	9100	7100	b	4300	3300	2600	c

(b) On graph paper using 1 cm for each second on the horizontal axis and 1 cm for each thousand on the vertical axis, draw and label the graph representing this information.
(c) Using your graph, answer the following questions:
(i) After how many seconds will there be 5000 bacteria? Give your answer correct to the nearest tenth of a second.
(ii) How many bacteria will there be after 6.8 seconds? Give your answer correct to the nearest hundred bacteria.
(iii) Will there be a time when there are no bacteria left? Explain your answer.
8. Consider the function $f(x)=2 \sin x-1$ where $0 \leq x \leq 720^{\circ}$.
(a) Write down the period of the function.
(b) Find the minimum value of the function.
(c) Solve $f(x)=1$.
(Total 8 marks)
9. The curve shown in the figure below is part of the graph of the function, $f(x)=2+\sin (2 x)$, where x is measured in degrees.

(a) Find the range of $f(x)$.
(b) Find the amplitude of $f(x)$.
(c) Find the period of $f(x)$.
(d) If the function is changed to $f(x)=2+\sin (4 x)$ what is the effect on the period, compared to the period of the original function?
10. A student has drawn the two straight line graphs L_{1} and L_{2} and marked in the angle between them as a right angle, as shown below. The student has drawn one of the lines incorrectly.

Consider L_{1} with equation $y=2 x+2$ and L_{2} with equation $y=-\frac{1}{4} x+1$.
(a) Write down the gradients of L_{1} and L_{2} using the given equations.
(b) Which of the two lines has the student drawn incorrectly?
(c) How can you tell from the answer to part (a) that the angle between L_{1} and L_{2} should not be 90° ?
(d) Draw the correct version of the incorrectly drawn line on the diagram.
(Total 8 marks)
11. Two functions are defined as follows

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{l}
6-x \text { for } 0 \leq x<6 \\
x-6 \text { for } x \geq 6
\end{array}\right. \\
& g(x)=\frac{1}{2} x
\end{aligned}
$$

(a) Draw the graphs of the functions f and g in the interval $0 \leq x \leq 14,0 \leq y \leq 8$ using a scale of 1 cm to represent 1 unit on both axes.
(b) (i) Mark the intersection points A and B of $f(x)$ and $g(x)$ on the graph.
(ii) Write down the coordinates of A and B.
(c) Calculate the midpoint M of the line AB .
(d) Find the equation of the straight line which joins the points M and N.

