IB MATHEMATICS SL

Trigonometry Class work

NAME _____

DATE:_____

Use the graph to find the values of

- (a) *c*;
- (b) *a*.

(Total 4 marks)

- 2. (a) For $y = 0.5 \cos 0.5 x$, find
 - (i) the amplitude;
 - (ii) the period.
 - (b) Let $y = -3 \sin x + 2$, where $90^{\circ} \le x \le 270^{\circ}$.

By drawing the graph of *y* or otherwise, complete the table below for the given values of *y*.

x	у
	-1
	2

(Total 4 marks)

3. (a) A function f is represented by the following mapping diagram.

Write down the function f in the form

 $f: x \mapsto y, x \in \{\text{the domain of } f\}.$

(b) The function *g* is defined as follows

 $g: x \mapsto \sin 15x^\circ$, $\{x \in \mathbb{N} \text{ and } 0 < x \le 4\}$.

Complete the following mapping diagram to represent the function g.

4. The graph below shows part of the function $y = 2 \sin x + 3$.

(a) Write the domain of the part of the function shown on the graph.

(b) Write the range of the part of the function shown on the graph.

⁽Total 4 marks)

5. The graph below shows the tide heights, h metres, at time t hours after midnight, for *Tahini* island.

- (a) Use the graph to find
 - (i) the height of the tide at 03:15;
 - (ii) the times when the height of the tide is 3.5 metres.

(3)

(3)

(b) The best time to catch fish is when the tide is **below** 3 metres. Find this best time, giving your answer as an inequality in *t*.

Due to the location of *Tahini* island, there is very little variation in the pattern of tidal heights. The maximum tide height is 4.5 metres and the minimum tide height is 1.5 metres. The height h can be modelled by the function

$$h(t) = a\cos(bt^\circ) + 3t$$

(c)	Use the graph above to find the values of the variables <i>a</i> and <i>b</i> .	
		(4)

- (d) Hence **calculate** the height of the tide at 13:00. (3)
- (e) At what time would the tide be at its lowest point in the second 8 hour period?

(2) (Total 15 marks) 6. The figure below shows a hexagon with sides all of length 4 cm and with centre at O. The interior angles of the hexagon are all equal.

The interior angles of a polygon with *n* equal sides and *n* equal angles (regular polygon) add up to $(n-2) \times 180^{\circ}$.

- (a) Calculate the size of angle A \hat{B} C.
- (b) Given that OB = OC, find the area of the triangle OBC.
- (c) Find the area of the whole hexagon.

(Total 8 marks)

7. The number of bacteria (y) present at any time is given by the formula:

 $y = 15\ 000e^{-025t}$, where t is the time in seconds and e = 2.72 correct to 3 s.f.

(a) Calculate the values of *a*, *b* and *c* to the nearest hundred in the table below:

Time in seconds (<i>t</i>)	0	1	2	3	4	5	6	7	8
Amount of bacteria (y) (nearest hundred)	а	11700	9100	7100	b	4300	3300	2600	С

(3)

(b) On graph paper using 1 cm for each second on the horizontal axis and 1 cm for each thousand on the vertical axis, draw and label the graph representing this information.

(5)

- (c) Using your graph, answer the following questions:
 - (i) After how many seconds will there be 5000 bacteria? Give your answer correct to the nearest tenth of a second.
 - (ii) How many bacteria will there be after 6.8 seconds? Give your answer correct to the nearest hundred bacteria.
 - (iii) Will there be a time when there are no bacteria left? Explain your answer.

(6) (Total 14 marks)

- 8. Consider the function $f(x) = 2\sin x 1$ where $0 \le x \le 720^\circ$.
 - (a) Write down the period of the function.
 - (b) Find the minimum value of the function.
 - (c) Solve f(x) = 1.

(Total 8 marks)

9. The curve shown in the figure below is part of the graph of the function, $f(x) = 2 + \sin(2x)$, where x is measured in degrees.

- (a) Find the range of f(x).
- (b) Find the amplitude of f(x).
- (c) Find the period of f(x).
- (d) If the function is changed to $f(x) = 2 + \sin(4x)$ what is the effect on the period, compared to the period of the original function?

(Total 8 marks)

10. A student has drawn the two straight line graphs L_1 and L_2 and marked in the angle between them as a right angle, as shown below. The student has drawn one of the lines incorrectly.

Consider L₁ with equation y = 2x + 2 and L₂ with equation $y = -\frac{1}{4}x + 1$.

- (a) Write down the gradients of L_1 and L_2 using the given equations.
- (b) Which of the two lines has the student drawn incorrectly?
- (c) How can you tell from the answer to part (a) that the angle between L_1 and L_2 should not be 90°?
- (d) Draw the correct version of the incorrectly drawn line on the diagram.

(Total 8 marks)

11. Two functions are defined as follows

$$f(x) = \begin{cases} 6-x \text{ for } 0 \le x < 6\\ x-6 \text{ for } x \ge 6 \end{cases}$$

$$g(x) = \frac{1}{2}x$$

(a) Draw the graphs of the functions f and g in the interval $0 \le x \le 14$, $0 \le y \le 8$ using a scale of 1 cm to represent 1 unit on both axes.

(5)

- (b) (i) Mark the intersection points A and B of f(x) and g(x) on the graph.
 - (ii) Write down the coordinates of A and B.
- (c) Calculate the midpoint M of the line AB. (2)

(4)

(3)

(d) Find the equation of the straight line which joins the points M and N.

(Total 14 marks)