Vectors worksheet ans

IB Level 12-13

1. $u+v=4 i+3 j$

$$
\begin{align*}
& \text { Then } a(4 i+3 \boldsymbol{j})=8 \boldsymbol{i}+(b-2) \boldsymbol{j} \tag{A1}\\
& 4 a=8 \\
& 3 a=b-2 \tag{A1}\\
& \text { Whence } \\
& a=2 \\
& b=8
\end{align*}
$$

2. (i) $|\boldsymbol{a}|=\sqrt{12^{2}+5^{2}}=13$
(ii) $|\boldsymbol{b}|=\sqrt{6^{2}+8^{2}}=10$

$$
\begin{align*}
\Rightarrow \text { unit vector in direction of } \boldsymbol{b} & =\frac{1}{10}(6 \boldsymbol{i}+8 \boldsymbol{j}) \tag{A1}\\
& =0.6 \boldsymbol{i}+0.8 \boldsymbol{j}
\end{align*}
$$

(iii) $\boldsymbol{a} \cdot \boldsymbol{b}=|\boldsymbol{a} \| \boldsymbol{b}| \cos \theta$

$$
\begin{align*}
\Rightarrow \cos \theta & =\frac{12(6)+5(8)}{13(10)} \tag{M1}\\
& =\frac{112}{130}=\frac{56}{65} \tag{A1}
\end{align*}
$$

3. Angle between lines $=$ angle between direction vectors.

Direction vectors are $\binom{4}{3}$ and $\binom{1}{-1}$.
$\binom{4}{3} \cdot\binom{1}{-1}=\left|\binom{4}{3}\right|\left|\binom{1}{-1}\right| \cos \theta$
$4(1)+3(-1)=\left(\sqrt{4^{2}+3^{2}}\right)\left(\sqrt{1^{2}+(-1)^{2}}\right) \cos \theta$
$\cos \theta=\frac{1}{5 \sqrt{2}}=0.1414$
$\theta=81.9^{\circ}(3 \mathrm{sf}),(1.43$ radians $)$
(A1) (C6)

Note: If candidates find the angle between the vectors $\binom{4}{-1}$ and $\binom{2}{4}$, award marks as below:

Angle required is between $\binom{4}{-1}$ and $\binom{2}{4}$
(M0)(A0)
$\binom{4}{-1} \cdot\binom{2}{4}=\left|\binom{4}{-1}\right|\left|\binom{2}{4}\right| \cos \theta$
$4(2)+(-1) 4=\left(\sqrt{4^{2}+(-1)^{2}}\right)\left(\sqrt{2^{2}+4^{2}}\right) \cos \theta$
$\frac{4}{\sqrt{17} \sqrt{20}}=\cos \theta=0.2169$
$\theta=77.5^{\circ}(3 \mathrm{sf}),(1.35$ radians $)$
(A1) (C4)
4. Required vector will be parallel to $\binom{3}{-1}-\binom{-1}{4}$

$$
\begin{equation*}
=\binom{4}{-5} \tag{M1}
\end{equation*}
$$

Hence required equation is $\boldsymbol{r}=\binom{-1}{4}+t\binom{4}{-5}$
Note: Accept alternative answers, eg $\binom{3}{-1}+s\binom{4}{-5}$.
5. $\binom{2}{3} \cdot\binom{x-4}{y+1}$
(M1) (M1)

Notes: Award (M1) for using scalar product.
Award (M1) for $\binom{x-4}{y+1}$.

$$
\begin{align*}
& 2(x-4)+3(y+1)=0 \tag{A1}\\
& 2 x-8+3 y+3=0 \\
& 2 x+3 y=5 \tag{A1}
\end{align*}
$$

OR

Gradient of a line parallel to the vector $\binom{2}{3}$ is $\frac{3}{2}$
Gradient of a line perpendicular to this line is $-\frac{2}{3}$
So the equation is $y+1=-\frac{2}{3}(x-4)$

$$
\begin{align*}
& \Rightarrow 3 y+3=-2 x+8 \tag{A1}\\
& \Rightarrow 2 x+3 y=5 \tag{A1}
\end{align*}
$$

6. Direction vectors are $\boldsymbol{a}=\boldsymbol{i}-3 \boldsymbol{j}$ and $\boldsymbol{b}=\boldsymbol{i}-\boldsymbol{j}$.
$\boldsymbol{a} \cdot \boldsymbol{b}=(1+3)$
$|\boldsymbol{a}|=\sqrt{10},|\boldsymbol{b}|=\sqrt{2}$
$\cos \theta=\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{\boldsymbol{a} \| \boldsymbol{b} \mid}\left(=\frac{4}{\sqrt{10} \sqrt{2}}\right)$
$\cos \theta=\frac{4}{\sqrt{20}}$
7. (a)

$$
\text { (i) } \begin{aligned}
& \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}}=\binom{-3}{-1}-\binom{2}{-2} \\
& =\binom{-5}{1}
\end{aligned}
$$

(A1) (N2) 2
(ii) $|\overrightarrow{\mathrm{AB}}|=\sqrt{25+1}$

$$
\begin{equation*}
=\sqrt{26}(=5.10 \text { to } 3 \mathrm{sf}) \tag{M1}
\end{equation*}
$$

Note: An answer of 5.1 is subject to $\boldsymbol{A P}$.
(b) $\overrightarrow{\mathrm{AD}}=\overrightarrow{\mathrm{OD}}-\overrightarrow{\mathrm{OA}}$

$$
\begin{aligned}
& =\binom{d}{23}-\binom{2}{-2} \\
& =\binom{d-2}{25}
\end{aligned}
$$

(A1)(A1) 2
(c) (i) EITHER

$$
\mathrm{BAD}=90^{\circ} \Rightarrow \overrightarrow{\mathrm{AB}} \bullet \overrightarrow{\mathrm{AD}}=0 \text { or mention of scalar (dot) product. }
$$

$$
\begin{align*}
& \Rightarrow\binom{-5}{1} \cdot\binom{d-2}{25}=0 \\
& -5 d+10+25=0 \tag{A1}\\
& d=7 \tag{AG}
\end{align*}
$$

OR

$$
\left.\begin{array}{l}
\text { Gradient of } \mathrm{AB}=-\frac{1}{5} \\
\text { Gradient of } \mathrm{AD}=\frac{25}{d-2} \tag{A1}
\end{array}\right\}
$$

$$
\begin{align*}
& \left(\frac{25}{d-2}\right) \times\left(-\frac{1}{5}\right)=-1 \tag{A1}\\
& \Rightarrow d=7 \tag{AG}
\end{align*}
$$

(ii) $\quad \overrightarrow{\mathrm{OD}}=\binom{7}{23}$ (correct answer only)
(d) $\overrightarrow{\mathrm{AD}}=\overrightarrow{\mathrm{BC}}$
$\overrightarrow{\mathrm{BC}}=\binom{5}{25}$
$\overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{BC}}$
$\overrightarrow{\mathrm{OC}}=\binom{-3}{-1}+\binom{5}{25}$
$=\binom{2}{24}$
(A1) (N3) 4
Note: Many other methods, including scale drawing, are acceptable.
(e) $|\overrightarrow{\mathrm{AD}}|($ or $|\overrightarrow{\mathrm{BC}}|)=\sqrt{5^{2}+25^{2}}=\sqrt{650}$

Area $=\sqrt{26} \times \sqrt{650}=(5.099 \times 25.5)$
$=130$
(A1) 2
8. (a) $|\overrightarrow{O A}|=6 \quad \Rightarrow \quad A$ is on the circle
(A1)
$|\overrightarrow{O C}|=\left|\binom{5}{\sqrt{11}}\right|$
$=\sqrt{25+11}$
$=6 \quad \Rightarrow \quad C$ is on the circle.
(A1) 3
(b) $\overrightarrow{A C}=\overrightarrow{O C}-\overrightarrow{O A}$
$=\binom{5}{\sqrt{11}}-\binom{6}{0}$
$=\binom{-1}{\sqrt{11}}$
(A1) 2

$$
\begin{align*}
& =\frac{\binom{-6}{0} \cdot\binom{-1}{\sqrt{11}}}{6 \sqrt{1+11}} \tag{M1}\\
& =\frac{6}{6 \sqrt{12}} \tag{A1}\\
& =\frac{1}{2 \sqrt{3}}=\frac{\sqrt{3}}{6} \tag{A1}
\end{align*}
$$

OR $\cos O \hat{A} C=\frac{6^{2}+(\sqrt{12})^{2}-6^{2}}{2 \times 6 \times \sqrt{12}}$
$=\frac{1}{\sqrt{12}}$ as before
OR using the triangle formed by $\overrightarrow{A C}$ and its horizontal and vertical components:

$$
\begin{equation*}
|\overrightarrow{A C}|=\sqrt{12} \tag{A1}
\end{equation*}
$$

$\cos O \hat{A} C=\frac{1}{\sqrt{12}}$

Note: The answer is 0.289 to 3 sf
(d) A number of possible methods here
$\overrightarrow{B C}=\overrightarrow{O C}-\overrightarrow{O B}$
$=\binom{5}{\sqrt{11}}-\binom{-6}{0}$
$=\binom{11}{\sqrt{11}}$
$|B C|=\sqrt{132}$
$|\triangle A B C|=\frac{1}{2} \times \sqrt{132} \times \sqrt{12}$
$=6 \sqrt{11}$

OR $\triangle A B C$ has base $A B=12$
and height $=\sqrt{11}$
\Rightarrow area $=\frac{1}{2} \times 12 \times \sqrt{11}$
$=6 \sqrt{11}$

OR Given $\cos B \hat{A} C=\frac{\sqrt{3}}{6}$
$\sin B \hat{A} C=\frac{\sqrt{33}}{6} \Rightarrow|\Delta A B C|=\frac{1}{2} \times 12 \times \sqrt{12} \times \frac{\sqrt{33}}{6}$
(A1)(A1)(A1)
$=6 \sqrt{11}$
(A1) 4
9.

(a) $\overrightarrow{\mathrm{ST}}=\boldsymbol{t}-\boldsymbol{s}$

$$
\begin{align*}
& =\binom{7}{7}-\binom{-2}{-2} \tag{M1}\\
& =\binom{9}{9} \tag{A1}
\end{align*}
$$

$$
\overrightarrow{\mathrm{VU}}=\overrightarrow{\mathrm{ST}}
$$

$u-v=\binom{9}{9}$
$v=u-\binom{9}{9}$
$=\binom{5}{15}-\binom{9}{9}=\binom{-4}{6}$
$\mathrm{V}(-4,6)$
(A1) 5
(b) Equation of (UV) : direction is $=\binom{9}{9}\left(\right.$ or $\left.k\binom{1}{1}\right)$

$$
\begin{equation*}
r=\binom{5}{15}+\lambda\binom{9}{9} \text { or }\binom{5}{15}+\lambda\binom{1}{1} \tag{A1}
\end{equation*}
$$

OR

$$
\begin{equation*}
r=\binom{-4}{6}+\lambda\binom{9}{9} \quad \text { or }\binom{-4}{6}+\lambda\binom{1}{1} \tag{A1}
\end{equation*}
$$

(c) $\binom{1}{11}$ is on the line because it gives the same value of λ, for both the x and y coordinates.

For example, $1=5+9 \lambda \quad \lambda=-\frac{4}{9}$

$$
\begin{equation*}
11=15+9 \lambda \quad \lambda=-\frac{4}{9} \tag{A1}
\end{equation*}
$$

(d) (i) $\overrightarrow{\mathrm{EW}}=\binom{a}{17}-\binom{1}{11}$

$$
\begin{equation*}
=\binom{a-1}{6} \tag{M1}
\end{equation*}
$$

$$
\begin{align*}
|\overrightarrow{\mathrm{EW}}|=2 \sqrt{13} \Rightarrow & \sqrt{(a-1)^{2}+36}=2 \sqrt{13}\left(\text { or }(a-1)^{2}+36=52\right)(\mathrm{M} 1) \tag{A1}\\
& a^{2}-2 a+1+36=52 \\
& a^{2}-2 a-15=0 \tag{A1}\\
& a=5 \text { or } \quad a=-3
\end{align*}
$$

(ii) For $a=-3$

$$
\begin{align*}
& \overrightarrow{\mathrm{EW}}=\binom{-4}{6} \quad \overrightarrow{\mathrm{ET}}=\boldsymbol{t}-\boldsymbol{e}=\binom{6}{-4} \tag{A1}\\
& \begin{aligned}
\cos \mathrm{WET} & =\frac{\overrightarrow{\mathrm{EW}} \cdot \overrightarrow{\mathrm{ET}}}{|\overrightarrow{\mathrm{EW}}||\overrightarrow{\mathrm{ET}}|} \\
& =\frac{-24-24}{\sqrt{52} \sqrt{52}} \\
& =-\frac{12}{13}
\end{aligned} \tag{M1}
\end{align*}
$$

Therefore, WÊT $=157^{\circ}(3$ sf $)$
10. (a) At $13: 00, t=1$

$$
\begin{equation*}
\Rightarrow\binom{x}{y}=\binom{0}{28}+1 \times\binom{ 6}{-8}=\binom{6}{20} \tag{M1}
\end{equation*}
$$

(b) (i) Velocity vector: $\binom{x}{y}_{t=1}-\binom{x}{y}_{t=0}$

$$
\begin{equation*}
=\binom{6}{20}-\binom{0}{28}=\binom{6}{-8}\left(\mathrm{~km} \mathrm{~h}^{-1}\right) \tag{M1}
\end{equation*}
$$

(ii) Speed $=\sqrt{\left(6^{2}+(-8)^{2}\right)}$;

$$
\begin{equation*}
=10 ; 10 \mathrm{~km} \mathrm{~h}^{-1} \tag{M1}
\end{equation*}
$$

(c) EITHER $\left.\begin{array}{l}x=6 t \\ y=28-8 t\end{array}\right\}$

Note: Award (M1) for both equations.
$\Rightarrow y=28-8\left(\frac{x}{6}\right)$
Note: Award (M1) for elimination, award (A1) for equation in x, y.
$\Rightarrow 4 x+3 y=84$
(a1) 4

OR

$$
\begin{align*}
& \binom{x}{y} \cdot\binom{6}{-8}^{\perp}=\binom{0}{28} \cdot\binom{6}{-8}^{\perp} \tag{M1}\\
& \binom{x}{y} \cdot\binom{8}{6}=\binom{0}{28} \cdot\binom{8}{6} \tag{M1}\\
& \Leftrightarrow 4 x+3 y=84
\end{align*}
$$

(A1) 4
(d) They collide if $\binom{18}{4}$ lies on path;

EITHER $(18,4)$ lies on $4 x+3 y=84$

$$
\begin{align*}
& \Leftrightarrow 4 \times 18+3 \times 4=84 \\
& \Leftrightarrow 72+12=84 ; \mathrm{OK} ; \tag{M1}\\
& x=18 \tag{M1}\\
& \Rightarrow 18=6 t \Rightarrow t=3, \text { collide at } 15: 00
\end{align*}
$$

(A1) 4
OR $\quad\binom{18}{4}=\binom{0}{28}+t\binom{6}{-8}$ for some t,

$$
\Leftrightarrow\left\{\begin{align*}
18 & =6 t \tag{A1}\\
\text { and } 4 & =28-8 t
\end{align*}\right\}
$$

$$
\Leftrightarrow\left\{\begin{align*}
t & =3 \tag{A1}\\
\text { and } 8 t & =24
\end{align*}\right\}
$$

$$
\Leftrightarrow\left\{\begin{array}{r}
t=3 \\
\mathbf{a n d} t=3
\end{array}\right\}
$$

They collide at 15:00
(A1) 4
(e) $\quad\binom{x}{y}=\binom{18}{4}+(t-1)\binom{5}{12}$

$$
\begin{align*}
& =\binom{18+5 t-5}{4+12 t-12} \tag{M1}\\
& =\binom{13}{-8}+t\binom{5}{12}
\end{align*}
$$

(f) At $t=3$,

$$
\begin{align*}
& \binom{x}{y}=\binom{13+3 \times 5}{-8+3 \times 12}=\binom{28}{28} \tag{M1}\\
& \binom{28}{28}-\binom{18}{4}=\binom{10}{24} \tag{A1}\\
& \sqrt{\left(10^{2}+24^{2}\right)}=\sqrt{(676)}=26
\end{align*}
$$

26 km apart
(A1) 4
11. (a) $\left|\binom{18}{24}\right|=30 \mathrm{~km} \mathrm{~h}^{-1}$

$$
\left.\begin{array}{rl}
\left.\left\lvert\, \begin{array}{c}
36 \\
-16
\end{array}\right.\right) \tag{A1}
\end{array}\right)=\sqrt{36^{2}+(-16)^{2}}=39.4
$$

(b) (i) After $1 / 2$ hour, position vectors are

$$
\begin{equation*}
\binom{9}{12} \text { and }\binom{18}{-8} \tag{A1}
\end{equation*}
$$

(ii) At 6.30 am , vector joining their positions is

$$
\begin{align*}
& \binom{9}{12}-\binom{18}{-8}=\binom{-9}{20}\left(\text { or }\binom{9}{-20}\right) \tag{M1}\\
& \left|\binom{-9}{20}\right| \tag{M1}\\
& =\sqrt{481}(=21.9 \mathrm{~km} \text { to } 3 \mathrm{sf}) \tag{A1}
\end{align*}
$$

(c) The Toyundai must continue until its position vector is $\binom{18}{k}$

Clearly $k=24$, ie position vector $\binom{18}{24}$.
To reach this position, it must travel for 1 hour in total.
Hence the crew starts work at 7.00 am
(A1)
(d) Southern (Chryssault) crew lays $800 \times 5=4000 \mathrm{~m}$ (A1)
Total by $11.30 \mathrm{am}=7.6 \mathrm{~km}$
Their starting points were $24-(-8)=32 \mathrm{~km}$ apart
Hence they are now $32-7.6=24.4 \mathrm{~km}$ apart
(e) Position vector of Northern crew at 11.30 am is
$\binom{18}{24-3.6}=\binom{18}{20.4}$
(M1)(A1)
Distance to base camp $=\left|\binom{18}{20.4}\right|$

$$
\begin{equation*}
=27.2 \mathrm{~km} \tag{A1}
\end{equation*}
$$

Time to cover this distance $=\frac{27.2}{30} \times 60$

$$
\begin{equation*}
=54.4 \text { minutes } \tag{A1}
\end{equation*}
$$

$$
=54 \text { minutes (to the nearest minute) }
$$

(A1) 5
12. (a) (i) $\overrightarrow{\mathrm{OA}}=\binom{240}{70} \mathrm{OA}=\sqrt{240^{2}+70^{2}}=250$

$$
\begin{equation*}
\text { unit vector }=\frac{1}{250}\binom{240}{70}=\binom{0.96}{0.28} \tag{A1}
\end{equation*}
$$

(ii) $\bar{v}=300\binom{0.96}{0.28}=\binom{288}{84}$
(iii) $t=\frac{240}{288}=\frac{5}{6} \mathrm{hr}(=50 \mathrm{~min})$
(A1) 5
(b) $\quad \overrightarrow{\mathrm{AB}}=\binom{480-240}{250-70}=\binom{240}{180}$

$$
\mathrm{AB}=\sqrt{240^{2}+180^{2}}=300
$$

$$
\begin{equation*}
\cos \theta=\frac{\overrightarrow{\mathrm{OA}} \bullet \overrightarrow{\mathrm{AB}}}{\mathrm{OA} \times \mathrm{AB}}=\frac{(240)(240)+(70)(180)}{(250)(300)} \tag{M1}
\end{equation*}
$$

$=0.936$
$\Rightarrow \theta=20.6^{\circ}$
(c) (i) $\overrightarrow{\mathrm{AX}}=\binom{339-240}{238-70}=\binom{99}{168}$
(ii) $\binom{-3}{4} \cdot\binom{240}{180}=-720+720=0$

$$
\begin{equation*}
\Rightarrow \boldsymbol{n} \perp \overrightarrow{\mathrm{AB}} \tag{M1}
\end{equation*}
$$

(iii) Projection of $\overrightarrow{\mathrm{AX}}$ in the direction of \boldsymbol{n} is

$$
X Y=\frac{1}{5}\binom{99}{168} \cdot\binom{-3}{4}=\frac{-297+672}{5}=75
$$

$(\mathrm{M} 1)(\mathrm{A} 1)(\mathrm{A} 1) \quad 6$
(d) $\mathrm{AX}=\sqrt{99^{2}+168^{2}}=195$
$\mathrm{AY}=\sqrt{195^{2}-75^{2}}=180 \mathrm{~km}$
(M1)(A1) 3
[18]
13. (a) At $t=2,\binom{2}{0}+2\binom{0.7}{1}=\binom{3.4}{2}$

Distance from $(0,0)=\sqrt{3.4^{2}+2^{2}}=3.94 \mathrm{~m}$
(A1) 2
(b) $\quad\left|\binom{0.7}{1}\right|=\sqrt{0.7^{2}+1^{2}}$

$$
\begin{equation*}
=1.22 \mathrm{~m} \mathrm{~s}^{-1} \tag{M1}
\end{equation*}
$$

(c) $\quad \begin{aligned} & x=2+0.7 t \text { and } y=t \\ & x-0.7 y=2\end{aligned}$
(M1)
(A1) 2
(d) $y=0.6 x+2$ and $x-0.7 y=2$
$x=5.86$ and $y=5.52\left(\right.$ or $x=\frac{170}{29}$ and $\left.y=\frac{160}{29}\right)$
(A1)(A1) 3
(e) The time of the collision may be found by solving
$\binom{5.86}{5.52}=\binom{2}{0}+\binom{0.7}{1} t$ for t
$\Rightarrow t=5.52 \mathrm{~s}$
[ie collision occurred 5.52 seconds after the vehicles set out].
Distance d travelled by the motorcycle is given by
$d=\left|\binom{5.86}{5.52}-\binom{0}{2}\right|=\sqrt{(5.86)^{2}+(3.52)^{2}}$
$=\sqrt{46.73}$
$=6.84 \mathrm{~m}$
Speed of the motorcycle $=\frac{d}{t}=\frac{6.84}{5.52}$
$=1.24 \mathrm{~m} \mathrm{~s}^{-1}$
(A1) 5
[14]
14. (a) $\boldsymbol{u} \cdot \boldsymbol{v}=8+3+p$

For equating scalar product equal to zero

$$
\begin{align*}
8+3+p & =0 \tag{M1}\\
p & =-11
\end{align*}
$$

A1 N3
(b) $|\boldsymbol{u}|=\sqrt{2^{2}+3^{2}+(-1)^{2}}=\sqrt{14}, 3.74$
$q \sqrt{14}=14$

$$
q=\sqrt{14}(=3.74)
$$

15. (a) $\overrightarrow{\mathrm{OG}}=5 i+5 j-5 k$

A2 2
(b) $\overrightarrow{\mathrm{BD}}=5 i+5 k$

A2 2
(c) $\overrightarrow{\mathrm{EB}}=5 \boldsymbol{i}+5 \boldsymbol{j}-5 \boldsymbol{k}$

A2 2
Note: Award $A 0(A 2)(A 2)$ if the 5 is consistently omitted.
16. (a) (i) evidence of combining vectors

$$
\begin{aligned}
& \text { eg } \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}} \text { (or } \overrightarrow{\mathrm{AD}}=\overrightarrow{\mathrm{AO}}+\overrightarrow{\mathrm{OD}} \text { in part (ii)) } \\
& \overrightarrow{\mathrm{AB}}=\left(\begin{array}{c}
2 \\
-4 \\
-2
\end{array}\right) \text { A1 } \mathrm{N} 2 \\
& \text { (ii) } \quad \overrightarrow{\mathrm{AD}}=\left(\begin{array}{c}
2 \\
k-5 \\
-2
\end{array}\right) \text { A1 } \quad \mathrm{N} 1
\end{aligned}
$$

(b) evidence of using perpendicularity \Rightarrow scalar product $=0$
e.g. $\left(\begin{array}{c}2 \\ -4 \\ -2\end{array}\right) \cdot\left(\begin{array}{c}2 \\ k-5 \\ -2\end{array}\right)=0$
$4-4(k-5)+4=0$
$-4 k+28=0$ (accept any correct equation clearly leading to $k=7$)

$$
\mathrm{k}=7
$$

AG N0
(c) $\quad \overrightarrow{\mathrm{AD}}=\left(\begin{array}{c}2 \\ 2 \\ -2\end{array}\right)$
$\overrightarrow{\mathrm{BC}}=\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)$
evidence of correct approach
eg $\overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{BC}},\left(\begin{array}{l}3 \\ 1 \\ 2\end{array}\right)+\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right),\left(\begin{array}{c}x-3 \\ y-1 \\ z-2\end{array}\right)=\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)$
$\overrightarrow{\mathrm{OC}}=\left(\begin{array}{l}4 \\ 2 \\ 1\end{array}\right)$
(d) METHOD 1
choosing appropriate vectors, $\overrightarrow{B A}, \overrightarrow{B C}$
finding the scalar product
$e g-2(1)+4(1)+2(-1), 2(1)+(-4)(1)+(-2)(-1)$
$\cos \mathrm{ABC}=0$

METHOD 2

$\overrightarrow{\mathrm{BC}}$ parallel to $\overrightarrow{\mathrm{AD}}$ (may show this on a diagram with points labelled) R 1
$\overrightarrow{B C} \perp \overrightarrow{\mathrm{AB}}$ (may show this on a diagram with points labelled) R1
$\mathrm{ABC}=90^{\circ}$
$\cos \mathrm{A} \hat{\mathrm{B}} \mathrm{C}=0$
A1 N1
[13]
17. (a) Attempting to find unit vector $\left(e_{b}\right)$ in the direction of \boldsymbol{b}

Correct values $=\frac{1}{\sqrt{3^{2}+4^{2}+0^{2}}}\left(\begin{array}{l}3 \\ 4 \\ 0\end{array}\right)$

$$
=\left(\begin{array}{c}
0.6 \\
0.8 \\
0
\end{array}\right)
$$

Finding direction vector for $\boldsymbol{b}, \boldsymbol{v}_{\boldsymbol{b}}=18 \times \boldsymbol{e}_{\boldsymbol{b}}$
$\boldsymbol{b}=\left(\begin{array}{c}10.8 \\ 14.4 \\ 0\end{array}\right)$
Using vector representation $\boldsymbol{b}=\boldsymbol{b}_{0}+\boldsymbol{t v}_{\boldsymbol{b}}$

$$
=\left(\begin{array}{l}
0 \tag{M1}\\
0 \\
5
\end{array}\right)+t\left(\begin{array}{c}
10.8 \\
14.4 \\
0
\end{array}\right)
$$

(b)
(i) $t=0 \Rightarrow(49,32,0)$

A1 1
(ii) Finding magnitude of velocity vector (M1)
Substituting correctly $v_{h}=\sqrt{(-48)^{2}+(-24)^{2}+6^{2}}$ A1

$$
=54\left(\mathrm{~km} \mathrm{~h}^{-1}\right)
$$

A1 3
(c) (i) At R, $\left(\begin{array}{c}10.8 t \\ 14.4 t \\ 5\end{array}\right)=\left(\begin{array}{c}49-48 t \\ 32-24 t \\ 6 t\end{array}\right)$
$t=\frac{5}{6}(=0.833)$ (hours)
A1

A1 2
(ii) For substituting $t=\frac{5}{6}$ into expression for b or $h \quad$ M1
$(9,12,5)$
A2 3
18. (a) (i) Evidence of subtracting all three components in the correct order M1
eg $\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}}=(4 \boldsymbol{i}-5 \boldsymbol{j}+21 \boldsymbol{k})-(2 \boldsymbol{i}+3 \boldsymbol{j}+\boldsymbol{k})$

$$
=2 i-8 j+20 k
$$

AG N0
(ii) $|\overrightarrow{\mathrm{AB}}|=\sqrt{2^{2}+(-8)^{2}+20^{2}}(=\sqrt{468}=6 \sqrt{13}=2 \sqrt{117}=21.6)$

$$
\begin{gather*}
u=\frac{1}{\sqrt{468}}(2 \boldsymbol{i}-8 \boldsymbol{j}+20 \boldsymbol{k}) \tag{A1}\\
\left(=\frac{2}{\sqrt{468}} \boldsymbol{i}-\frac{8}{\sqrt{468}} \boldsymbol{j}+\frac{20}{\sqrt{468}} \boldsymbol{k}, 0.0925 \boldsymbol{i}-0.370 \boldsymbol{j}+0.925 \boldsymbol{k}, \text { etc. }\right)
\end{gather*}
$$

A1 N 2
(iii) If the scalar product is zero, the vectors are perpendicular.

Note: Award R1 for stating the relationship between the scalar product and perpendicularity, seen anywhere in the solution.
Finding an appropriate scalar product $(u \bullet \overrightarrow{\mathrm{OA}}$ or $\overrightarrow{\mathrm{AB}} \bullet \overrightarrow{\mathrm{OA}}) \quad$ M1
eg $\boldsymbol{u} \cdot \overrightarrow{\mathrm{OA}}=\left(\frac{2}{\sqrt{468}}\right) \times 2+\left(\frac{-8}{\sqrt{468}}\right) \times 3+\left(\frac{20}{\sqrt{468}}\right) \times 1$
$\left(=\frac{4-24+20}{\sqrt{468}}\right)$
$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{OA}}=2 \times 2+(-8) \times 3+20 \times 1$
$u \bullet \overrightarrow{\mathrm{OA}}=0$ or $\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{OA}}=0$
A1 N0
(b) (i) EITHER

$$
\begin{equation*}
S\left(\frac{2+4}{2}, \frac{3-5}{2}, \frac{1+21}{2}\right) \tag{M1}
\end{equation*}
$$

Therefore, $\overrightarrow{\mathrm{OS}}=3 \boldsymbol{i}-\boldsymbol{j}+11 \boldsymbol{k} \quad$ (accept $(3,-1,11))$
OR

$$
\begin{align*}
\overrightarrow{\mathrm{OS}} & =\overrightarrow{\mathrm{OA}}+\frac{1}{2} \overrightarrow{\mathrm{AB}} \tag{M1}\\
& =(2 \boldsymbol{i}+3 \boldsymbol{j}+\boldsymbol{k})+\frac{1}{2}(2 \boldsymbol{i}+8 \boldsymbol{j}+20 \boldsymbol{k}) \tag{A1}
\end{align*}
$$

$$
\overrightarrow{\mathrm{OS}}=3 \boldsymbol{i}-\boldsymbol{j}+11 \boldsymbol{k}
$$

(ii) $L_{1}: r=(3 \boldsymbol{i}-\boldsymbol{j}+11 \boldsymbol{k})+t(2 \boldsymbol{i}+3 \boldsymbol{j}+1 \boldsymbol{k})$
A1 N3

$$
\mathrm{A} 1 \quad \mathrm{~N} 1
$$

(c) Using direction vectors (eg $2 \boldsymbol{i}+3 \boldsymbol{j}+1 \boldsymbol{k}$ and $-2 \boldsymbol{i}+5 \boldsymbol{j}-3 \boldsymbol{k})$

Valid explanation of why L_{1} is not parallel to L_{2}
R1 N2
eg. Direction vectors are not scalar multiples of each other.
Angle between the direction vectors is not zero or 180.
Finding the angle

$$
\boldsymbol{d}_{1} \cdot \boldsymbol{d}_{2} \neq\left|\boldsymbol{d}_{1}\right|\left|\boldsymbol{d}_{2}\right|
$$

Note: Award R0 for "direction vectors are not equal".
(d) Setting up any two of the three equations

For each correct equation
$e g 3+2 t=5-2 s,-1+3 t=10+5 s, 11+t=10-3 s$
Attempt to solve these equations
Finding one correct parameter ($s=-1, t=2$)
P has position vector $7 \boldsymbol{i}+5 \boldsymbol{j}+13 \boldsymbol{k}$
Notes: Award (M1)A2 if the same parameter is used for both lines in the initial correct equations. Award no further marks.

