IB STANDARD LEVEL MATHEMATICS

ANALYZING FUNCTIONS

4 Answer the whole of this question on a sheet of graph paper.

x	-4	-3	-2	-1	0	1	2	3	4
f(x)	-8	4.5	8	5.5	0	-5.5	- 8	-4.5	8

(a) Using a scale of 2 cm to represent 1 unit on the x-axis and 2 cm to represent 4 units on the y-axis, draw axes for $-4 \le x \le 4$ and $-8 \le y \le 8$.

Draw the curve y = f(x) using the table of values given above.

[5]

(b) Use your graph to solve the equation f(x) = 0.

[2]

(c) On the same grid, draw y = g(x) for $-4 \le x \le 4$, where g(x) = x + 1.

[2]

(d) Write down the value of

- (i) g(1),
- (ii) fg(1),
- (iii) $g^{-1}(4)$,

(iv) the **positive** solution of f(x) = g(x).

[4]

(e) Draw the tangent to y = f(x) at x = 3. Use it to calculate an estimate of the gradient of the curve at this point. [3]

Answer all of this question on a sheet of graph paper.

(a) $f(x) = x^2 - x - 3$.

x	-3	-2	-1	0	1	2	3	4
f(x)	p	3	-1	-3	q	-1	3	r

(i) Find the values of p, q and r.

[3]

(ii) Draw the graph of y = f(x) for $-3 \le x \le 4$. Use a scale of 1 cm to represent 1 unit on each axis.

[4]

(iii) By drawing a suitable line, estimate the gradient of the graph at the point where x = -1. [3]

(b) $g(x) = 6 - \frac{x^3}{3}$.

x	-2	-1	0	1	2	3
g(x)	8.67	и	ν	5.67	3.33	-3

(i) Find the values of u and v.

[2]

(ii) On the same grid as part (a) (ii) draw the graph of y = g(x) for $-2 \le x \le 3$.

.

(c) (i) Show that the equation f(x) = g(x) simplifies to $x^3 + 3x^2 - 3x - 27 = 0$.

[4]

[1]

(ii) Use your graph to write down a solution of the equation $x^3 + 3x^2 - 3x - 27 = 0$.

[1]

Answer the whole of this question on a sheet of graph paper.

The table gives values of $f(x) = 2^x$, for $-2 \le x \le 4$.

x	-2	-1	0	1	2	3	4
f(x)	p	0.5	q	2	4	r	16

(a) Find the values of p, q and r.

(b) Using a scale of 2 cm to 1 unit on the x-axis and 1 cm to 1 unit on the y-axis, draw the graph of y = f(x) for $-2 \le x \le 4$. [5]

[3]

- (c) Use your graph to solve the equation $2^x = 7$. [1]
- (d) What value does f(x) approach as x decreases? [1]
- (e) By drawing a tangent, estimate the gradient of the graph of y = f(x) when x = 1.5. [3]
- (f) On the same grid draw the graph of y = 2x + 1 for $0 \le x \le 4$. [2]
- (g) Use your graph to find the non-integer solution of $2^x = 2x + 1$. [2]

_ _

Answer only one of the following two alternatives.

EITHER

The equation of a curve is $y = 2x^2 - 20x + 37$.

(i) Express y in the form
$$a(x+b)^2 + c$$
, where a, b and c are integers. [3]

A function f is defined by $f: x \mapsto 2x^2 - 20x + 37$ for x > k. Given that the function $f^{-1}(x)$ exists,

(iii) write down the least possible value of
$$k$$
, [1]

(iv) sketch the graphs of
$$y = f(x)$$
 and $y = f^{-1}(x)$ on the axes provided, [2]

OR

A function g is defined by $g: x \mapsto 5x^2 + px + 72$, where p is a constant. The function can also be written as $g: x \mapsto 5(x-4)^2 + q$.

(i) Find the value of
$$p$$
 and of q . [3]

(iv) Given that the function h is defined by h:
$$x \mapsto \ln x$$
, where $x > 0$, solve the equation $gh(x) = 12$. [4]

Answers

	<u> </u>			
4	(a)	Scales correct 9 points correctly plotted (1mm)	S1 P3	-4 ≤ x ≤ 4 and -8 ≤ y ≤ 8 Allow P2 for 7 or 8 correct, P1 for 5 or 6 correct
		Reasonable curve through 9 points	C1√ (5)	√ provided shape maintained, curvature OK and not ruled
	(b)	$-3.6 \le x \le -3.3, x = 0, 3.3 \le x \le 3.6$	B2 (2)	Allow B1 for 1 correct non-zero solution; condone (-3.5, 0) (answers must be in range and correct for their graph)
	(c)	Line from (-4, -3) to (4, 5), and ruled	B2 (2)	If B0, allow B1 for gradient 1 or intercept 1 on single line
	(d)	g(1) = 2 fg(1) = -8 $g^{-1}(4) = 3$	B1 B1 B1	Not (1, 2)
		$3.75 \le x \le 3.9$	B1 (4)	Lost if y-coordinate given. Answer must be OK for their graph

	(e)	Tangent drawn at x = 3 on curve Vert./Horiz. using scale Answer in range 5-10 and OK for theirs	B1 M1 A1 (3)	Not chord or daylight Dep. on reasonable approx to tangent used at $x = 3$ (N.B. Gradient = 4.5 + y-value of tangent at $x = 4$)
		TOTAL	16	
5	(a)	½ 10.10.sin60° o.e.	M1	Any complete method including $\sqrt{15.5.5.5}$

Q2(a)(i)	p = 9 $q = -3$ $r = 9$	1+1+1	Must be seen. No feedback from graph.		
(ii)	Scales correct	S1 √	x from -3 to 4. y to accommodate their values.		
	Their 8 points plotted correctly (1mm)	P2 √	P1 $$ for 6 or 7 of their points correct.		
	Reasonable curve through all 8 of their		Condone ruled line for $x = 3$ to 4 or -3 to -2 .		
	points (1mm tolerance)	C1 √	ft provided correct shape maintained.		
(iii)	Tangent drawn at $x = -1$ on curve -3.5	T1	Or a parallel line drawn.		
	to -2.5 Condone fractions	B2	If B2 not scored, give B1 for 2.5 to 3.5 after M1.		
(b)(i)	u = 6.33 or better $v = 6$	1+1	Allow $u = 19/3$		
(ii)	Their 6 points plotted correctly (1mm)	P3 √	P2 for 5 correct ($\sqrt{}$). P1 for 4 correct ($\sqrt{}$).		
	Reasonable curve through all 6 of their		Condone ruled line for $x = 2$ to 3.		
	points (1mm tolerance)	C1 √	ft provided correct shape maintained		
(c)(i)	$x^2 - x - 3 = 6 - x^3/3$ o.e.				
	to $x^3 + 3x^2 - 3x - 27 = 0$	E1	At least 1 intermediate step and no errors seen.		
(ii)	2.3 to 2.7 c.a.o.	B1	Not coordinates 18		
O3(a)(i)	Madian 36 to 37 (cm)	R1			

4 (a)	p = 0.25 q = 1 r = 8	B1 B1 B1	Must be seen. No feedback from graph. If not labelled, must be in order
(b)	Scales correct Their 7 points plotted correctly (within 1mm and in the correct square) Smooth curve through all 7 points (1mm)	S1 P3√ C1√	 x from -2 to 4. y to accommodate their values. ft P2 for 6 points correct. P1 for 5 points correct. ft provided correct shape maintained
(c)	2.75 to 2.85	B1	
(d)	0	В1	
(e)	Tangent drawn at x = 1.5 Uses increase in y (using scale) increase in x 1.7 to 2.2 Correct ruled straight line (complete	T1 M1 A1	Not a chord and no daylight Dep on T1 or a near miss (not chord or clearly drawn at x = 1 or x = 2) If correct method seen, condone any answer in range, even with a slight slip SC1 for freehand complete line or any ruled
(f)	Correct ruled straight line (complete for range 0 to 4)	D2	line of gradient 2 or <i>y</i> -intercept of 1 (not <i>y</i> =1)
(g)	Correct for theirs(±0.05) dep. on at least SC1 in (f)	B2 √	SC1 if <i>y</i> -coordinate also given or <i>x</i> =0 also given (or both)
		17	

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2012	0606	21

12O (i)	$5(x^2 - 8x + 16) + q \text{ and equate}$ $p = -40$ $q = -8$		M1 A1 A1				
(ii)	(ii) $g(x) > -8$						
(iii)	(iii)						
	positive quadratic curve correct position						
(iv)	$5(\ln x - 4)^2 - 8 = 12$	$5(\ln x)^2 - 40\ln x + 60 = 0$	B1				
	solve for $(\ln x - 4)$ $\ln x = 2, 6$	solve 3 term quadratic $\ln x = 2, 6$	M1 A1				
	$x = 7.39$ or e^2 , $x = 403$ or e^6	$x = 7.39 \text{ or } e^2, x = 403 \text{ or } e^6$	A1 [10]				