Section 1 Powers

In maths we sometimes like to find shorthand ways of writing things. One such shorthand we use is powers. It is easier to write 2^3 than $2 \times 2 \times 2$. The cubed sign tells us to take the number and multiply it by itself 3 times. The 3 is called the index. Then 10^6 means multiply 10 by itself 6 times. This means:

$$10^6 = 10 \times 10 \times 10 \times 10 \times 10 \times 10$$

We can do calculations with this shorthand. Look at this calculation:

$$3^2 \times 3^3 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^5$$

because 3 is now being multiplied by itself 5 times. So we could have just written $3^3 \times 3^2 = 3^5$. The more general rule is

$$x^a \times x^b = x^{a+b}$$

where x, a and b are any numbers.

We add the indices when we multiply two powers of the same number.

Example 1 :

$$5^6 \times 5 = 5^7$$

Note that $5 = 5^1$.

Example 2:

$$x^3 \times x^b = x^{3+b}$$

Example 3 :

$$3^3 \times 3^0 = 3^3$$

so that 3^0 must be equal to 1. Indeed, for any non zero number $x, x^0 = 1$.

$$x^0 = 1$$
 if $x \neq 0$

We can only use this trick if we are multiplying powers of the same number. Notice that we can't use this rule to simplify $5^3 \times 8^4$, as the numbers 5 and 8 are different.

This shorthand in powers gives us a way of writing $(3^2)^3$. In words, $(3^2)^3$ means: take 3, multiply it by itself, then take the result, and multiply that by itself 3 times. Then

$$(3^2)^3 = (3 \times 3)^3 = (3 \times 3) \times (3 \times 3) \times (3 \times 3) = 3^6$$

The general form of the rule in multiplying powers is

$$(x^a)^b = x^{a \times b}$$

Example 4:

$$(5^2)^4 = 5^8$$

 $(x^3)^b = x^{3 \times b}$

Finally, what happens if we have different numbers raised to powers? Say we have $3^2 \times 5^3$. In this particular case, we would leave it as it is. However, in some cases, we can simplify. One case is when the indices are the same. Consider $3^2 \times 6^2$. Then

$$3^{2} \times 6^{2} = 3 \times 3 \times 6 \times 6$$
$$= 3 \times 6 \times 3 \times 6$$
$$= (3 \times 6)^{2}$$
$$= 18^{2}$$

We can get the second line because multiplication is commutative, which is to say that $a \times b = b \times a$. The general rule then when the indices are the same is

$$x^a \times y^a = (x \times y)^a$$

Example 5 :

$$2^2 \times 3^2 \times 5^2 = (2 \times 3 \times 5)^2 = 30^2$$

Exercises:

1. Simplify the following and leave your answers in index form:

(a) $6^3 \times 6^7$	(f) $(8^2)^3$
(b) $4^5 \times 4^2$	(g) $5^3 \times 5^9$
(c) $x^7 \times x^9$	(h) $x^6 \times x^{12} \times x^3$
(d) $m^4 \times m^3$	(i) $(x^3)^4 \times x^5$
(e) $(m^4)^3$	(j) $m^4 \times (m^5)^2 \times m$

Section 2 Negative Powers

We can write $\frac{1}{x}$ as x^{-1} . That is: $x^{-1} = \frac{1}{x}$. Now we can combine this notation with what we have just learnt.

Example 1:

$$\frac{1}{x \times x \times x \times x} = \frac{1}{x^4}$$
$$= (x^4)^{-1}$$
$$= x^{-4}$$

 $\underline{\text{Example } 2}$:

$$2^{-3} = (2^3)^{-1} = 8^{-1} = \frac{1}{8}$$

We treat negative indices in calculations in the same manner as positive indices. Then

$$\begin{array}{rcl}
x^{b} \times x^{-a} &=& x^{b+(-a)} = x^{b-a} \\
(x^{b})^{-a} &=& x^{-ab} \\
x^{-n} &=& \frac{1}{x^{n}}
\end{array}$$

Consider this longhand example:

Example 3:

$$2^{-3} \times 2^{5} = \frac{1}{2 \times 2 \times 2} \times 2 \times 2 \times 2 \times 2 \times 2$$
$$= \frac{2 \times 2 \times 2 \times 2 \times 2}{2 \times 2 \times 2}$$
$$= 2 \times 2$$
$$= 2^{2}$$

whereas our shorthand notation gives: $2^{-3} \times 2^5 = 2^{-3+5} = 2^2$.

This concept may be written in the form of a division.

Example 4 : $x^7 \times \frac{1}{x^6} = x^7 \div x^6$. When we divide two powers of the same number, we subtract the indices. Hence,

$x^m \div x^n$	$=x^{m-n}$
----------------	------------

So

$$x^7 \div x^6 = x^{7-6}$$
$$= x^1$$
$$= x$$

Example 5:

$$\begin{array}{rcl} 6^8 \div 6^3 & = & 6^{8-3} \\ & = & 6^5 \end{array}$$

 $\underline{\text{Example } 6}:$

$$m^4 \div m^9 = m^{4-9}$$

= m^{-5}
= $\frac{1}{m^5}$

Example 7:

$$\begin{array}{rcl}
x^8 \div x^{-2} &=& x^{8-(-2)} \\
&=& x^{8+2} \\
&=& x^{10}
\end{array}$$

Exercises:

- 1. Simplify the following and leave your answers in index form:
 - (a) $6^{-4} \times 6^{7}$ (b) $10^{8} \times 10^{-5}$ (c) $x^{7} \times x^{3}$ (d) $(x^{-2})^{3}$ (e) $y^{-12} \times y^{5}$ (f) $y^{8} \div y^{3}$ (g) $7^{2} \div 7^{-4}$ (h) $(m^{4})^{-2} \times (m^{3})^{5}$ (i) $y^{6} \times y^{14} \div y^{5}$ (j) $(8^{3})^{4} \div (8^{2})^{3}$

Section 3 FRACTIONAL POWERS

What do we mean by $4^{\frac{1}{2}}$? The notation means that we are looking for a number which, when multiplied by itself, gives 4. Then $4^{\frac{1}{2}} = 2$ because $2 \times 2 = 4$. In general, $x^{\frac{1}{a}}$ is asking us to find a number which, when multiplied by itself *a* times, gives us *x*. In the case when the index is $\frac{1}{2}$, as above, we also use the square-root sign: $x^{\frac{1}{2}} = \sqrt{x}$. So $8^{\frac{1}{3}}$ means the number which when multiplied by itself 3 times gives us 8. That is, $8^{\frac{1}{3}}$ is the cube root of 8, and is written as $8^{\frac{1}{3}} = \sqrt[3]{8}$.

$$8^{\frac{1}{3}} = 2$$
 because $2 \times 2 \times 2 = 8$

What about $8^{\frac{2}{3}}$? With our previous rule about powers, we end up with this calculation:

$$8^{\frac{2}{3}} = (8^{\frac{1}{3}})^2 = (2)^2 = 4$$

Example 1 :

$$8^{\frac{1}{3}} \times 8^{\frac{2}{3}} = 8^{\frac{1}{3} + \frac{2}{3}} = 8^{\frac{3}{3}} = 8^{1} = 8$$

And, if we have $8^{\frac{1}{2}} \times 2^{\frac{1}{2}}$, because the indices are the same, then we can multiply the numbers together. Then

$$8^{\frac{1}{2}} \times 2^{\frac{1}{2}} = (8 \times 2)^{\frac{1}{2}} = 16^{\frac{1}{2}} = 4$$

Another way of writing this is

$$\sqrt{8} \times \sqrt{2} = \sqrt{8 \times 2} = \sqrt{16} = 4$$

The simplification process can often be taken only so far with simple numbers. Consider

$$5^{\frac{1}{3}} \times 3^{\frac{1}{3}} = (5 \times 3)^{\frac{1}{3}} = 15^{\frac{1}{3}}$$

There is no simpler way of writing $15^{\frac{1}{3}}$, so we leave it how it stands.

<u>Example 2</u> : Recall that $x^{-\frac{1}{2}} = \frac{1}{x^{\frac{1}{2}}}$. Then

$$9^{-\frac{1}{2}} = \frac{1}{9^{\frac{1}{2}}} = \frac{1}{3}$$

Exercises:

- 1. Simplify the following:
 - (a) $9^{\frac{1}{2}}$
 - (b) $27^{\frac{1}{3}}$
 - (c) $16^{\frac{1}{2}}$
 - (d) $16^{-\frac{1}{2}}$
 - (e) $27^{-\frac{2}{3}}$
- 2. Rewrite the following in index form:
 - (a) $\sqrt{8}$
 - (b) $\sqrt[3]{m}$
 - (c) $(m^6)^{\frac{1}{2}}$
 - (d) $(10^{\frac{1}{2}})^3$
 - (e) $(16^{\frac{1}{2}})^{-2}$

- 1. (a) Express $3 \times 3 \times 3 \times 2 \times 2$ using powers.
 - (b) Write 27 in index form using base 3.
 - (c) Calculate the following. Which are the same?

i.
$$2^2 \times 3^2$$

ii. $(2+3)^2$
ii. $(2+3)^2$
iv. $(2 \times 3)^2$
vi. $(\frac{2}{3})^2$

- (d) Express $\frac{1}{5^2}$ in index form with base 5.
- (e) Express $\frac{1}{27}$ in index form with base 3.
- (f) Express $\sqrt{64}$ in index form with base 64.

2. Simplify the following:

- (a) $2^3 \times 2^4$
- (b) $(3^2)^5$ (leave in index form)
- (c) $12^5 \div 12^7$
- (d) $(2.3)^2(2.3)^{-4}$ (leave in index form)
- (e) $8^{-\frac{1}{3}}$
- (f) $\frac{4^8}{4^{12}} \times 4^{-3}$ (leave in index form)

(g)
$$\frac{2^1}{2^{-3}} + (2^2 + 2^1)^2$$

- (g) $\frac{1}{2^{-3}} + (1)^{-3}$ (h) $(0.01)^2$
- (i) $10^5 \div (3^2 \times 10^{-2})^3$ (leave in index form)

Answers 1	1.8
-----------	-----

Sectio	on 1									
1.	(a) (b)	6^{10} 4^{7}	(c) x^{16} (d) m^7		(e) 7 (f) 8	m^{12} 8^{6}	(g) (h)	5^{12} x^{21}	(i) (j)	x^{17} m^{15}
Section 2										
1.	(a) (b)	6 ³ 10 ³	(c) x^{10} (d) x^{-6}		(e) g (f) g	y^{-7} y^{5}	(g) (h)	7^6 m^7	(i) (j)	y^{15} 8^6
Sectio	on 3									
1.	(a)	3	(b) 3		(c) 4	4	(d)	$\frac{1}{4}$	(e)	$\frac{1}{9}$
2.	(a)	$8^{\frac{1}{2}}$	(b) $m^{\frac{1}{2}}$		(c) <i>i</i>	m^3	(d)	$10^{\frac{3}{2}}$	(e)	16^{-1}
Exer	cises	1.8								
1.	(a)	$3^3 \times 2^2$		(c) i	& iv,	v & vi		(e) 3^{-3}		
	(b)	3 ³		(d) 5^{-1}	-2			(f) $64^{\frac{1}{2}}$		
2.	(a)	128		(d) 2.	$.3^{-2}$			(g) 52		
	(b)	3 ¹⁰		(e) $\frac{1}{2}$	-7			(h) 0.0001	6	
	(c)	144		(1) 4	•			(1) $10^{11}3^{-1}$	0	