INTERNATIONAL BACCALAUREATE

MATHEMATICAL METHODS STANDARD LEVEL PAPER 1

Monday 7 May 2001 (afternoon)

1 hour

INSTRUCTIONS TO CANDIDATES

- Write your name and candidate number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Answer all the questions in the spaces provided.
- Unless otherwise stated in the question, all numerical answers must be given exactly or to three significant figures, as appropriate.
- Write the make and model of your calculator in the box below e.g. Casio $f x-9750 G$, Sharp EL-9400, Texas Instruments TI-85.

Calculator

Make	Model

EXAMINER	TEAM LEADER		IBCA	
TOTAL	TOTAL	TOTAL		
		160		160

Maximum marks will be given for correct answers. Where an answer is wrong, some marks may be given for a correct method provided this is shown by written working. Working may be continued below the box, if necessary. Where graphs from a graphic display calculator are being used to find solutions, you should sketch these graphs as part of your answer.

1. Given the following frequency distribution, find
(a) the median;
(b) the mean.

Number (x)	1	2	3	4	5	6
Frequency (f)	5	9	16	18	20	7

Working:

Answers:
(a)
(b)
2. The diagram shows part of the graph with equation $y=x^{2}+p x+q$. The graph cuts the x-axis at -2 and 3 .

Find the value of
(a) p;
(b) q.

Working:

Answers:
(a) \qquad
(b)
3. Each year for the past five years the population of a certain country has increased at a steady rate of 2.7% per annum. The present population is 15.2 million.
(a) What was the population one year ago?
(b) What was the population five years ago?

Working:

Answers:
(a)
(b) \qquad
4. The following diagram shows a triangle with sides $5 \mathrm{~cm}, 7 \mathrm{~cm}, 8 \mathrm{~cm}$.

Find
(a) the size of the smallest angle, in degrees;
(b) the area of the triangle.

Working:

Answers:
(a)
(b)
5. The point $\mathrm{P}\left(\frac{1}{2}, 0\right)$ lies on the graph of the curve of $y=\sin (2 x-1)$.

Find the gradient of the tangent to the curve at P .

Working:

Answer:

6. Use the binomial theorem to complete this expansion.

$$
(3 x+2 y)^{4}=81 x^{4}+216 x^{3} y+\ldots
$$

Working:

Answer:
7. A bag contains 10 red balls, 10 green balls and 6 white balls. Two balls are drawn at random from the bag without replacement. What is the probability that they are of different colours?

Working:

Answer:

8. The points P, Q have coordinates $\mathrm{P}(4,0), \mathrm{Q}(-5,7)$.

Find the equation of the line which is perpendicular to (PQ) and passes through the point P . Give your answer in the form $a x+b y+c=0$, where a, b, and c are integers.

Working:

9. Find
(a) $\int \sin (3 x+7) \mathrm{d} x$;
(b) $\int \mathrm{e}^{-4 x} \mathrm{~d} x$.

Working:

Answers:
(a)
(b)
10. Find the angle between the following vectors \boldsymbol{a} and \boldsymbol{b}, giving your answer to the nearest degree.

$$
\begin{aligned}
& a=-4 i-2 j \\
& b=i-7 j
\end{aligned}
$$

Working:

11. (a) On the following diagram, sketch the graphs of $y=\mathrm{e}^{x}$ and $y=\cos x$ for $-2 \leq x \leq 1$.

(b) The equation $\mathrm{e}^{x}=\cos x$ has a solution between -2 and -1 .

Find this solution.

Working:

Answer:
(b)
12. The function f is defined by

$$
f: x \text { a } \sqrt{3-2 x}, \quad x \leq \frac{3}{2}
$$

Evaluate $f^{-1}(5)$.

Working.

Answer:
13. (a) Write the expression $3 \sin ^{2} x+4 \cos x$ in the form $a \cos ^{2} x+b \cos x+c$.
(b) Hence or otherwise, solve the equation

$$
3 \sin ^{2} x+4 \cos x-4=0, \quad 0^{\circ} \leq x \leq 90^{\circ}
$$

Working:

Answers:
(a)
(b)
14. The following diagram shows the graph of $y=f(x)$. It has minimum and maximum points at $(0,0)$ and $\left(1, \frac{1}{2}\right)$.

(a) On the same diagram, draw the graph of $y=f(x-1)+\frac{3}{2}$.
(b) What are the coordinates of the minimum and maximum points of $y=f(x-1)+\frac{3}{2}$?

Working:

Answers:
(b) \qquad
15. In the following diagram, O is the centre of the circle and (AT) is the tangent to the circle at T.

If $\mathrm{OA}=12 \mathrm{~cm}$, and the circle has a radius of 6 cm , find the area of the shaded region.

Working:

Answer:

