uncorrected indices

This chapter deals with defining the system of real numbers, distinguishing between rational and irrational numbers, performing operations with surds, using integers and fractions for index notation, and converting between surd and index forms.

After completing this chapter you should be able to:

- define real numbers and distinguish between rational and irrational numbers
- simplify expressions involving surds
- expand expressions involving surds
- rationalise the denominators of simple surds
- use the index laws to define fractional indices

- translate expressions in surd form and index form
- evaluate numerical expressions involving fractional indices
- use the calculator to evaluate fractional powers of numbers
- evaluate a fraction raised to the power of -1
- prove general properties of real numbers.

Diagnostic test

1	correct?	are root of 4	g statements $\frac{1}{2}$ is 2 or -2	is not		$\sqrt{18} + \sqrt{2} =$ $A \sqrt{20}$ $C 2\sqrt{3} + \sqrt{2}$ $2\sqrt{3} \times 5\sqrt{6} =$	B $4\sqrt{2}$ D $2\sqrt{5}$	
	D $\sqrt{-4} =$					A $30\sqrt{6}$ B $30\sqrt{2}$	C $10\sqrt{30}$	D $\sqrt{180}$
2	Convert 0.	312 to a frac	ction.		12	$\sqrt{2}(\sqrt{5} - 2\sqrt{3}) =$		
	A $\frac{39}{125}$	B $\frac{104}{333}$	C $\frac{78}{25}$	D $\frac{26}{75}$		A $\sqrt{10} - 2\sqrt{3}$ C $\sqrt{10} - 4\sqrt{3}$		
3	Which of t	he following	g is <i>not</i> a rati	onal number?	12	$(2\sqrt{3} + \sqrt{5})(2\sqrt{3} - \sqrt{5})$	·	
	$\mathbf{A} \sqrt{11}$	B $\sqrt{\frac{9}{16}}$	C $2\frac{3}{4}$	D -4.7	13	$(2\sqrt{3} + \sqrt{3})(2\sqrt{3} - \sqrt{3})$ A $4\sqrt{2} - 2\sqrt{5}$ C 7	B 9	F
4	$(3\sqrt{5})^2 =$						\mathbf{D} / + 4 V	3
	A 45	B 225	C 15	D $9\sqrt{5}$	14	$(\sqrt{5} + \sqrt{2})^2 =$ A 7	$\mathbf{B} = 2\sqrt{2}$	10
5	In simples	t form, $\sqrt{32}$				C √14	D 2√7	
	A $2\sqrt{8}$	B $8\sqrt{2}$	C $16\sqrt{2}$	D $4\sqrt{2}$		A 7 C $\sqrt{14}$ Expressed with a ratio		215
6	Written in	the form \sqrt{n}	$\overline{i}, 5\sqrt{6} =$		~ {	$\mathbf{A} \ \frac{\sqrt{5}}{6} \qquad \mathbf{B} \ \frac{\sqrt{15}}{6}$	$\sqrt{5}$	$\sqrt{10}$
	A $\sqrt{30}$	B $\sqrt{180}$	\mathbf{C} $\sqrt{150}$	D √900	<u> </u>	$\mathbf{A} \mathbf{A} \mathbf{B} \mathbf{B} \mathbf{G}$	$\frac{1}{3}$	D <u>6</u>
7	$\frac{\sqrt{40}}{\sqrt{5}} =$	1	COR	D $\sqrt{900}$ F P $\sqrt{35}$ D $\sqrt{35}$	16	$10^{\frac{1}{2}} =$ A 5 B $\frac{1}{5}$	\mathbf{C} $\sqrt{10}$	D $\frac{1}{\sqrt{10}}$
	A 8	$\mathbf{B} = \frac{1}{8}$	V2V2	D √35	17	In index form, $\sqrt[4]{k^3} =$		
8	$\sqrt{4\frac{1}{9}} =$	U				A k^{12} B $k^{\frac{4}{3}}$	C $k^{\frac{3}{4}}$	D k^7
	$\mathbf{A} \sqrt{\frac{37}{3}}$	B $2\frac{1}{3}$	C $4\frac{1}{3}$	D $2\frac{1}{9}$	18	When evaluated, $27^{\frac{2}{3}} =$ A 18 B 9		D 40.5
9	$4\sqrt{10} - 2\sqrt{10}$	$\sqrt{5} + 6\sqrt{10} =$	=			(3)-1		
	A $8\sqrt{15}$		B $10\sqrt{10}$ ·	$-2\sqrt{5}$	19	$\left(\frac{3}{5}\right)^{-1} =$		
	C $8\sqrt{5}$		D $2\sqrt{15}$ +	$6\sqrt{10}$		A $1\frac{2}{3}$ B $-\frac{3}{5}$	C $-\frac{5}{3}$	D $\frac{1}{15}$

The Diagnostic Test questions refer to the sections of text listed in the table below.

Question	1	2	3	4–8	9, 10	11–14	15	16–18	19
Section	А	В	С	D	Е	F	G	Н	Ι

A Square root of a number

The **square root** of a number, *x*, is the number that when multiplied by itself is equal to *x*. For example, the square root of 9 is 3 or -3, since $3^2 = 9$ and $(-3)^2 = 9$. \sqrt{x} is the positive square root of *x*. For example, $\sqrt{9} = 3$ and $-\sqrt{9} = -3$. $-\sqrt{x}$ is then the negative square root of *x*.

11004 An aerial photo of a square house block (say 900 square metres). Needs to be square.

Since there is no number that when multiplied by itself is equal to -9, it is not possible to find $\sqrt{-9}$. We say that $\sqrt{-9}$ is **undefined**.

The square root of 0 is 0, since $0\sqrt{0} = 0$. Zero is neither positive nor negative but we define $\sqrt{0} = 0$.

In general:

- \sqrt{x} is undefined for x < 0
- $\sqrt{x} = 0$ for x = 0
- \sqrt{x} is the positive square root of x when x > 0.
- $-\sqrt{x}$ is the negative square root of x when x > 0.

EXAMPLE 2

Find the following, when a $\sqrt{36}$	b $-\sqrt{36}$	c √-36	$d \sqrt{0}$
a $\sqrt{36} = 6$	b $-\sqrt{36} = -6$	c undefined	d 0

2 Find the following, where possible.

a $\sqrt{100}$	b $\sqrt{-100}$	$c \sqrt{-4}$	d $\sqrt{0}$	e $\sqrt{16}$
$f - \sqrt{16}$	$\mathbf{g} \sqrt{-16}$	h $\sqrt{-49}$	i $-\sqrt{1}$	$\mathbf{j} \sqrt{1}$
k $\sqrt{-25}$	$\sqrt{-81}$	$m \sqrt{-64}$	n $-\sqrt{100}$	0 $\sqrt{-1}$

B Recurring decimals

As a decimal, $\frac{3}{8} = 0.375$ and $\frac{1}{3} = 0.333$ 33 ...

- When converted to a decimal, the fraction $\frac{3}{8}$ terminates. That is, the digits after the decimal point stop after 3 places have been filled. We call this a **terminating decimal**.
- When the fraction $\frac{1}{3}$ is converted to a decimal, the digits after the decimal point keep repeating or recurring. We call this a recurring decimal.

When converted to a decimal, all fractions either terminate or recur.

We call this **dot notation**.

0.3333... is written 0.3.

The dot above the 3 indicates that this digit recurs.

EXAMPLE 1
Write the following recurring decimals using dot notation.
a 0.4444 ... b 0.411 11 ... c 0.414 141 ... d 0.415 415 415 ... e 0.415 341 53 4 153 ...
a 0.4 b 0.4 i e 0.415 341 534 153 ... The dots are put above the first and last digits of the group of digits that repeat.

Exercise 11B
1 Write the following recurring decimals using dot notation.

a 0.7777 ... b 0.355 55 ... c 0.282 828 ... d 0.325 325 325 ...

a	0.7777	b	0.355 55	c	0.282 828	d	0.325 325 325
e	0.678 467 846 784	f	1.4444	g	6.922 22	h	0.494 949
i	0.234 234 234	j	0.033 33	k	0.909 090	1	0.536 666
m	0.217 77						

11005 Photo of an aerial view of an iron ore train or similar (say Pilbra)

Use your calculator to convert the following fractions to decimals.

- **b** $\frac{2}{3}$
- **a** By calculating $5 \div 8$ or using the fraction key, $\frac{5}{8} = 0.625$.

Hence $\frac{2}{3} = 0.6$.

a $\frac{5}{8}$

2 Convert the following fractions to decimals.

4 Convert the following recurring decimals to fractions.

a 0.2 **b** 0.3 **c** 0.5 **d** 0.8 **e** 0.7

5 Convert 0.9 to a fraction. Discuss the result with your class.

	ollowing recurring decimal			0.00	
a 0.46	b 0.91	c 0.30	d 0.63	e 0.98	
	ollowing recurring decimal			Hint: Before subtracting	
a 0.586	b 0.239	c 0.852		multiply by 1000.	U
d 0.423	e 0.615				
— • E 2	XAMPLE 5				
Convert the fo	ollowing recurring decimal	s to fractions.		Make the decimal parts the	•
a 0.35		b	0.51Ż	same before subtraction.	U
a	Let $n = 0.3\dot{5}$.	b	Le	$pt n = 0.51\dot{2}$	
	$n = 0.35555 \dots$			$n = 0.512222 \dots$	
Then	$10n = 3.5555 \dots$		Then 10	$00n = 51.2222 \dots$	
and	$100n = 35.5555 \dots$		and 100	$00n = 512.2222 \dots$	
By subtrac	ction, $90n = 32$		By subtraction, 90	00n = 461	
Hence	$n = \frac{32}{90} = \frac{16}{45}$		Hence	$n = \frac{461}{900}$	
	$\therefore 0.3\dot{5} = \frac{16}{45}$.: 0.5	$\dot{5}1\dot{2} = \frac{461}{900}$	
				- 65	
Convert the fc	ollowing recurring decimal	s to fractions.	25	2001	
a $0.3\dot{8}$	b 0.65	c 0.92	d 9.16	e 0.09	
••••••			CAV		
			- 10-		
Convert the fo	ollowing recurring decimal	s to fractions.	PACE		
Convert the fo a $0.54\dot{6}$	bllowing recurring decimal	s to fractions. c 0.762	d 0.905	e 0.049	
a 0.54Ġ		s to fractions. c 0.762	d 0.905	e 0.049	
a 0.54Ġ general:	b 0.723	s to fractions. c 0.762	d 0.905	e 0.049	
a 0.546 general: <i>p 1:</i> Let <i>n</i> equa	b 0.723 al the recurring decimal.	c 0.762	d 0.905	e 0.049	
a 0.546 general: <i>p 1:</i> Let <i>n</i> equa <i>p 2:</i> Multiply <i>n</i>	b 0.723 al the recurring decinai. <i>n</i> by the positive power of t	the decimal place	d 0.905	e 0.049 eating digit.	
a 0.546 general: <i>p 1:</i> Let <i>n</i> equa <i>p 2:</i> Multiply <i>n</i> <i>p 3:</i> Multiply <i>n</i>	b $0.72\dot{3}$ al the recurring decimal. <i>n</i> by the positive power of t <i>n</i> by the positive power of t	the decimal place	d 0.905	e 0.049 eating digit.	
a 0.546 general: <i>p 1:</i> Let <i>n</i> equa <i>p 2:</i> Multiply <i>n</i> <i>p 3:</i> Multiply <i>n</i> <i>p 4:</i> Subtract S	b $0.72\dot{3}$ al the recurring decinval. <i>n</i> by the positive power of to <i>n</i> by the positive power of to Step 2 from Step 3.	the decimal place	d 0.905	e 0.049 eating digit.	
a 0.546 general: <i>p 1:</i> Let <i>n</i> equa <i>p 2:</i> Multiply <i>n</i> <i>p 3:</i> Multiply <i>n</i> <i>p 4:</i> Subtract S	b $0.72\dot{3}$ al the recurring decimal. <i>n</i> by the positive power of t <i>n</i> by the positive power of t	the decimal place	d 0.905	e 0.049 eating digit.	
a 0.546 general: <i>p 1:</i> Let <i>n</i> equa <i>p 2:</i> Multiply <i>n</i> <i>p 3:</i> Multiply <i>n</i> <i>p 4:</i> Subtract S <i>p 5:</i> Solve for	b $0.72\dot{3}$ al the recurring decinval. <i>n</i> by the positive power of to <i>n</i> by the positive power of to Step 2 from Step 3.	the decimal place	d 0.905 before the first rep of the <i>last</i> repeatir	e 0.049 eating digit. ng digit.	
a 0.546 general: <i>p 1:</i> Let <i>n</i> equa <i>p 2:</i> Multiply <i>n</i> <i>p 3:</i> Multiply <i>n</i> <i>p 4:</i> Subtract S <i>p 5:</i> Solve for Convert the fo	b $0.72\dot{3}$ al the recurring decimal. <i>n</i> by the positive power of t <i>n</i> by the positive power of t Step 2 from Step 3. <i>n</i> as a fraction.	the decimal place the decimal place s to fractions, using	d 0.905 before the first rep of the <i>last</i> repeatir	e 0.049 eating digit. ng digit.	

C Real number system

Real numbers are those that can be represented by points on a number line. Real numbers are either rational or irrational.

• A rational number is a real number that can be expressed as the ratio $\frac{a}{b}$ of two integers, where $b \neq 0$.

Think: rational means 'ratio-nal'.

• An **irrational number** is a real number that is not rational.

NUMBER & ALGEBRA

hence are not rational. They are irrational numbers.

Determine whether the following real numbers are rational or irrational.

- **b** $\sqrt{\frac{16}{49}}$ a $\sqrt{6}$ $\sqrt{6} = 2.449\ 897\ 43\ \dots$ 8 Since the decimal neither terminates nor recurs, it cannot be expressed as the ratio of two integers, so $\sqrt{6}$ is an irrational number. **b** $\sqrt{\frac{16}{49}} = \frac{4}{7}$ (since $\frac{4}{7} \times \frac{4}{7} = \frac{16}{49}$) This is in the form $\frac{a}{b}$, where a and b are integers, so $\sqrt{\frac{16}{40}}$ is a rational number. **3** Determine whether the following real numbers are rational or irrational **d** $\sqrt{\frac{4}{25}}$ e $\sqrt{\frac{5}{16}}$ c $\sqrt{11}$ b $\sqrt{9}$ $\sqrt{8}$ a EXAMPLE 4 GEP - 2.4494 Using a calculator $\sqrt{6} = 2.449489743$... Write true or false for the following statements and discuss. **b** $\sqrt{6} = 2.449$ **a** $\sqrt{6} = 2.44$ The statement is false. **a** $2.44^2 = 5.9536$ **b** $2.449^2 = 5.997\ 601$ The statement is false $2.4494^2 = 5.99956036$ The statement is false. С Because $\sqrt{6}$ is irrational, its exact value cannot be written as a decimal. The values given in parts **a**, **b** and **c** us rational approximations for $\sqrt{6}$. 4 Using a calculator, $\sqrt{2} = 1.414213562...$ Write true or false for the following statements. **a** $\sqrt{2} = 1.41$ **b** $\sqrt{2} = 1.414$ c $\sqrt{2} = 1.4142$
- **5** Write rational approximations, correct to 3 decimal places, for the following.
 - **a** $\sqrt{11}$ **b** $\sqrt{15}$ **c** $\sqrt{37}$ **d** $\sqrt{99}$ **e** $\sqrt{151}$
- **6** a Using a ruler and set square, copy the diagram.

- **b** Use Pythagoras's rule to calculate the length of the interval OP_1 .
- c Using a pair of compasses, with point at O, accurately mark the position of $\sqrt{2}$ on the number line.

7 a Extend the diagram in question 6 as shown.

- **b** Calculate the length of OP_2 .
- c Mark the position of $\sqrt{3}$ on the number line.
- 8 Extend the diagram in question 7 to show the positions on the number line of $\sqrt{4}$, $\sqrt{5}$, $\sqrt{6}$, ...

Extension

9 Proof that $\sqrt{2}$ is irrational

In Example 2 we cannot be certain that the decimal form of $\sqrt{2}$ does not terminate or recur after some large number of decimal places; hence it is not a proof that $\sqrt{2}$ is irrational. Work through these proof with your teacher.

Assume that $\sqrt{2}$ is rational. That is, assume that $\sqrt{2}$ can be written in the form $\frac{a}{b}$, where a and b are integers and the fraction is written in its simplest form (that is, a and b have no common factors).

If
$$\sqrt{2} = \frac{a}{b}$$

then, squaring both sides, $2 = \frac{a^2}{b^2}$
and $a^2 = 2b^2$ (1)
Hence a^2 is even (any multiple of 2 is even) and therefore *a* is even.
If *a* is even, then *a* may be written in the form 2*k*, where *k* is an integer.
 $a^2 = 2k$
 $a^2 = 4k^2$
Substituting $a^2 = 4k$ into (1), $4k^2 = 2b^2$
 $b^2 = 2k^2$

Hence b^2 is even and therefore b is even.

But if a and b are both even, the fraction $\frac{a}{b}$ cannot be in its simplest form, which contradicts our original statement.

 $\sqrt{xy} = \sqrt{x} \times \sqrt{y}$ $\sqrt{\frac{x}{y}} = \frac{\sqrt{x}}{\sqrt{y}}$

Therefore $\sqrt{2}$ cannot be written in the form $\frac{a}{b}$, where *a* and *b* are integers with no common factor. Hence $\sqrt{2}$ is not rational; it is irrational.

D Properties of surds

In section C we distinguished between rational and irrational numbers. The set of irrational numbers contains numbers such as $\sqrt{2}$, $\sqrt[3]{2}$, π , etc. Irrational numbers that contain the **radical sign** $\sqrt{}$ are called **surds**. When working with surds we may use the following properties: If x > 0 and y > 0,

$$(\sqrt{x})^2 = x = \sqrt{x^2}$$

A **set** is a group of objects (numbers, letters, names, etc.).

Exercise 11D				
1 Simplify the following. a $(\sqrt{11})^2$ b $\sqrt{11^2}$ c $(\sqrt{8})^2$ d $\sqrt{8^2}$ e $(\sqrt{6})^2$ f $(3\sqrt{2})^2$ g $(2\sqrt{3})^2$ h $(5\sqrt{2})^2$ i $(10\sqrt{7})^2$ j $(4\sqrt{5})^2$				
• EXAMPLE 2				
Simplify the following. a $\sqrt{5} \times \sqrt{3}$ b $\sqrt{6} \times \sqrt{7}$				
Use the property $\sqrt{xy} = \sqrt{x} \times \sqrt{y}$. a $\sqrt{5} \times \sqrt{3} = \sqrt{5 \times 3}$ $= \sqrt{15}$ b $\sqrt{6} \times \sqrt{7} = \sqrt{6 \times 7}$ $= \sqrt{42}$				
2 Simplify the following. a $\sqrt{2} \times \sqrt{7}$ b $\sqrt{3} \times \sqrt{10}$ c $\sqrt{5} \times \sqrt{2}$ d $\sqrt{7} \times \sqrt{11}$ e $\sqrt{13} \times \sqrt{17}$ f $\sqrt{3} \times \sqrt{2} \times \sqrt{5}$ g $\sqrt{7} \times \sqrt{5} \times \sqrt{10}$ h $\sqrt{3} \times \sqrt{11} \times \sqrt{5}$ EXAMPLE 3				
Simplify the following. a $\sqrt{28}$ b $\sqrt{45}$				
 2 Simplify the following. a √2 × √7 b √3 × √10 c √5 × √2 d √7 × √11 e √13 × √17 f √3 × √2 × √5 g √7 × √5 × √10 h √3 × √11 × √5 • EXAMPLE 3 Simplify the following. a √28 b √45 Use the property √xy = √x × √y a √28 = √2 × 14 or √4 × 7 = √2 × √14 or √4 × √7 Since 4 is a perfect square, √4 simplifies to 2, so choose the second product. √28 = √4 × √7 = 2 × √7 = 2√7 b Look for factors of 45, one of which is a perfect square. 				
$\sqrt{45} = \sqrt{9} \times \sqrt{5}$ $= 3 \times \sqrt{5}$ $= 3\sqrt{5}$				

3 Simplify the following.

a $\sqrt{12}$	b $\sqrt{20}$	$\mathbf{c} \sqrt{18}$	d $\sqrt{27}$	$e \sqrt{8}$
f $\sqrt{90}$	$\mathbf{g} \sqrt{50}$	h $\sqrt{75}$	i $\sqrt{200}$	j √98
\mathbf{k} $\sqrt{24}$	$\sqrt{32}$	$\mathbf{m} \sqrt{48}$	n $\sqrt{72}$	o $\sqrt{12}8$

• EXAMPLE 4			
Simplify the following. a $\sqrt{3} \times \sqrt{12}$	b √2 >	< \6	
$\mathbf{a} \sqrt{3} \times \sqrt{12} = \sqrt{36} \\ = 6$	b √2 >	$ \sqrt{6} = \sqrt{12} $ $ = \sqrt{4} \times \sqrt{3} $ $ = 2\sqrt{3} $	
4 Simplify the following. a $\sqrt{8} \times \sqrt{2}$ b $\sqrt{2} \times \sqrt{32}$ f $\sqrt{14} \times \sqrt{2}$ g $\sqrt{8} \times \sqrt{5}$			
• EXAMPLE 5			
Express $3\sqrt{5}$ in the form \sqrt{n} .			
$3\sqrt{5} = 3 \times \sqrt{5}$ $= \sqrt{9} \times \sqrt{5}$ $= \sqrt{45}$		poofe	>
$3\sqrt{5} = 3 \times \sqrt{5}$ $= \sqrt{9} \times \sqrt{5}$ $= \sqrt{45}$ 5 Express in the form \sqrt{n} . a $3\sqrt{2}$ b $2\sqrt{3}$ • EXAMPLE 6 Simplify the following. a $\sqrt{\frac{16}{25}}$ Use the property $\sqrt{\frac{x}{y}} = \frac{\sqrt{x}}{\sqrt{5}}$.	c 4v5pAGE	d $5\sqrt{2}$	e 10√7
Simplify the following. a $\sqrt{\frac{16}{25}}$	b $\sqrt{\frac{11}{25}}$	c $\sqrt{2\frac{1}{4}}$	
Use the property $\sqrt{\frac{x}{y}} = \frac{\sqrt{x}}{\sqrt{y}}$. a $\sqrt{\frac{16}{25}} = \frac{\sqrt{16}}{\sqrt{25}}$ $= \frac{4}{5}$	$\mathbf{b} \sqrt{\frac{11}{25}} = \frac{\sqrt{11}}{\sqrt{25}}$ $= \frac{\sqrt{11}}{5}$	c $\sqrt{2\frac{1}{4}}$	
6 Simplify the following. a $\sqrt{\frac{9}{16}}$ b $\sqrt{\frac{9}{25}}$ f $\sqrt{\frac{21}{9}}$ g $\sqrt{6\frac{1}{4}}$	c $\sqrt{\frac{17}{25}}$ h $\sqrt{1\frac{7}{9}}$	d $\sqrt{\frac{5}{16}}$ i $\sqrt{1\frac{3}{4}}$	e $\sqrt{\frac{11}{16}}$ j $\sqrt{2\frac{5}{9}}$

NUMBER & ALGEBRA

์ 11

EXAMPLE	7	
Simplify the following. a $\frac{\sqrt{12}}{\sqrt{3}}$	b $\frac{\sqrt{15}}{\sqrt{5}}$	$c \frac{\sqrt{40}}{\sqrt{5}}$
Use the property $\sqrt{\frac{x}{y}} = \frac{\sqrt{x}}{\sqrt{y}}$ a $\frac{\sqrt{12}}{\sqrt{3}} = \sqrt{\frac{12}{3}}$ $= \sqrt{4}$ = 2	$\mathbf{b} \frac{\sqrt{15}}{\sqrt{5}} = \sqrt{\frac{15}{5}} \\ = \sqrt{3}$	$c \frac{\sqrt{40}}{\sqrt{5}} = \sqrt{\frac{40}{5}}$ $= \sqrt{8}$ $= 2\sqrt{2}$
7 Simplify the following.		
a $\frac{\sqrt{24}}{\sqrt{6}}$ b $\frac{\sqrt{18}}{\sqrt{2}}$	15	d $\frac{\sqrt{20}}{\sqrt{10}}$ e $\frac{\sqrt{24}}{\sqrt{8}}$
$\mathbf{f} \frac{\sqrt{30}}{\sqrt{6}} \qquad \qquad \mathbf{g} \left(\frac{\sqrt{2}}{\sqrt{3}}\right)$		i $\frac{\sqrt{32}}{\sqrt{2}}$ j $\frac{\sqrt{54}}{\sqrt{3}}$
	ving statements are true or false $3 \times \sqrt{7} = \sqrt{21}$ c (4 $\frac{\sqrt{12}}{2} = \sqrt{6}$ g $\sqrt{21}$	
	_	NGE

Addition and subtraction of surds

The term surd traces back to the Arab mathematician al-Khwarizmi (about 325 AD) who referred to rational and irrational numbers as 'audible' and 'inaudible' respetively. This eventually led to the Arabic *asamm* (deaf, dumb) for irrational numbers being translated as *surdus* (deaf, mute) in Latin.

Surds can be added or subtracted only if they are like surds (that is, if they have the same value under the radical sign). 11006 Photo of an Arabic or Latin scholar or of a person with hand to ear or a hearing aid or old-fashion hearing trumpert

-•	EXA	MP	LE	1

Simplify the following. a $3\sqrt{2} + 5\sqrt{2}$	b $8\sqrt{5} - 2\sqrt{5}$
a $3\sqrt{2} + 5\sqrt{2} = 8\sqrt{2}$	b $8\sqrt{5} - 2\sqrt{5} = 6\sqrt{5}$

Exercise 11E

1 Simplify the following. a $5\sqrt{3} + 4\sqrt{3}$ d $5\sqrt{10} - 7\sqrt{10}$ g $15\sqrt{6} - 3\sqrt{6} - 4\sqrt{6}$	b $7\sqrt{11} + 6\sqrt{11}$ e $6\sqrt{3} + 4\sqrt{3} + 5\sqrt{3}$ h $8\sqrt{5} - 3\sqrt{5} + 2\sqrt{5}$	c $7\sqrt{5} - 3\sqrt{5}$ f $8\sqrt{3} + 5\sqrt{3} - 7\sqrt{3}$ i $3\sqrt{5} - 8\sqrt{5} + 2\sqrt{5}$	
• EXAMPLE 2 Simplify the following. a $2\sqrt{2} + 5\sqrt{3} + 3\sqrt{2}$	b $7\sqrt{6} + 4\sqrt{7}$	$-3\sqrt{6}-5\sqrt{7}$	
a $4\sqrt{2} + 5\sqrt{3} + 3\sqrt{2} = 4\sqrt{2} + 3\sqrt{2}$ = $7\sqrt{2} + 5\sqrt{2}$		Collect like surds. $-5\sqrt{7} = 7\sqrt{6} - 3\sqrt{6} + 4\sqrt{7} - 5\sqrt{7}$ $= 4\sqrt{6} - \sqrt{7}$	
d $6\sqrt{5} + 2\sqrt{11} - 3\sqrt{5}$	b $7\sqrt{3} + 4\sqrt{5} + 3\sqrt{5}$ e $7\sqrt{10} - 4\sqrt{6} - 6\sqrt{10}$ h $10\sqrt{5} - 4\sqrt{3} - 5\sqrt{3} + 2\sqrt{5}$	c $5\sqrt{7}$ $2\sqrt{10} + 3\sqrt{7}$ f $5\sqrt{2} + 6\sqrt{3} - 3\sqrt{2} + \sqrt{3}$ $4\sqrt{11} - 3\sqrt{10} - 6\sqrt{11} - 2\sqrt{10}$	
• EXAMPLE 3 Simplify the following. a $\sqrt{18} + \sqrt{2}$	h $10\sqrt{5} - 4\sqrt{3} - 5\sqrt{5} + 2\sqrt{5}$ b $\sqrt{50} - \sqrt{18}$		
a $\sqrt{18} + \sqrt{2} = \sqrt{2} \times \sqrt{2} + \sqrt{2}$ = $3\sqrt{2} + \sqrt{2}$ = $4\sqrt{2}$	Convert to like	surds before adding or subtracting. $= \sqrt{25} \times \sqrt{2} - \sqrt{9} \times \sqrt{2}$ $= 5\sqrt{2} - 3\sqrt{2}$ $= 2\sqrt{2}$	
3 Simplify the following. a $\sqrt{18} + 4\sqrt{2}$ d $6\sqrt{2} - \sqrt{8}$ g $\sqrt{24} + 3\sqrt{6} - 4\sqrt{6}$	b $\sqrt{12} + 5\sqrt{3}$ e $\sqrt{45} + \sqrt{20}$ h $6\sqrt{2} - \sqrt{18} - 2\sqrt{2}$	c $\sqrt{20} - 2\sqrt{5}$ f $\sqrt{54} - \sqrt{24}$ i $\sqrt{75} - \sqrt{48} - \sqrt{27}$	
4 Simplify the following. a $5\sqrt{6} + \sqrt{24} - 3\sqrt{5}$ d $\sqrt{28} + \sqrt{27} + \sqrt{63} + \sqrt{12}$	b $\sqrt{50} + 6\sqrt{3} - \sqrt{8}$ e $7\sqrt{5} - \sqrt{20} + \sqrt{45} - 5\sqrt{6}$	c $8\sqrt{10} + 4\sqrt{5} - \sqrt{90}$ f $\sqrt{72} - 3\sqrt{8} + 6\sqrt{3} - \sqrt{108}$	3RA
5 Determine whether the following st a $\sqrt{5} + \sqrt{3} = \sqrt{8}$	atements are true or false. Give real b $3\sqrt{5} - 2\sqrt{5} = 1$	sons. c $\sqrt{24} - \sqrt{6} = \sqrt{6}$	& ALGEBRA

NUMBER & ALGEBRA

Multiplication of surds

Surds can be multiplied using the properties and

 $\sqrt{x} \times \sqrt{x} = x$ $\sqrt{x} \times \sqrt{y} = \sqrt{xy}$.

EXAMPLE 1

f $\sqrt{2}(3\sqrt{5}+2\sqrt{7})$ i $3\sqrt{6}(4\sqrt{3} + 2\sqrt{8})$

NUMBER & ALGEBRA

EXAMPLE 3		
Simplify the following. a $(\sqrt{5} + 3)(\sqrt{5} - 4)$	b $(2\sqrt{3} - 2\sqrt{5})(4\sqrt{3} + \sqrt{5})$	
$= -7 - \sqrt{2}$ b $(2\sqrt{3} - 2\sqrt{5})(4\sqrt{3} + \sqrt{5}) = 2$ = 2	$\overline{5} + 3\sqrt{5} - 12$ Use binomial (a + b)(c +	expression to remove grouping symbols: • d) = a(c + d) + b(c + d) = ac + ad + bc + bd
d $(2\sqrt{3} + 5)(\sqrt{3} + 1)$	b $(\sqrt{7} + 3)(\sqrt{7} - 4)$ e $(3\sqrt{2} + 4)(2\sqrt{2} - 7)$ h $(3\sqrt{7} + 5\sqrt{2})(\sqrt{7} - 4\sqrt{2})$	
Simplify the following. a $(\sqrt{2} - \sqrt{3})(\sqrt{2} + \sqrt{3})$	b (8√2 -	$3\sqrt{5}$) $(8\sqrt{2} - 3\sqrt{5})$
a $(\sqrt{2} - \sqrt{3})(\sqrt{2} + \sqrt{3}) = (\sqrt{2})^2$ = 2 - 3 b $(8\sqrt{2} + 3\sqrt{5})(8\sqrt{2} - 3\sqrt{5}) = (\sqrt{2})^2$ = 1	= -1 8\sqrt{2}^2 - (3\sqrt{5})^2	Use the special binomial expansions: $(a + b)(a - b) = a^2 - b^2$ $(a - b)(a + b) = a^2 - b^2$
Simplify the following. a $(\sqrt{5} - 3)(\sqrt{5} + 3)$ d $(\sqrt{6} - 3\sqrt{8})(\sqrt{6} + 3\sqrt{8})$	b $(\sqrt{10} + \sqrt{7})(\sqrt{10} - \sqrt{7})$ e $(4\sqrt{5} - 3\sqrt{2})(4\sqrt{5} + 3\sqrt{2})$	
• EXAMPLE 5		
Simplify the following. a $(\sqrt{7} + \sqrt{3})^2$	b $(3\sqrt{5} -$	$(2\sqrt{5})^2$
a $(\sqrt{7} + \sqrt{3})^2 = (\sqrt{7})^2 + 2 \times \sqrt{7}$ = 7 + 2 $\sqrt{21}$ + 3 b $(3\sqrt{5} - 2\sqrt{5})^2 = (3\sqrt{5})^2 - 2$		binomial expansions of perfect squares : (a + b) ² = a ² + 2ab + b ² (a - b) ² = a ² - 2ab + b ²

 $= 9 \times 5 - 12\sqrt{10} + 4 \times 2$

 $= 45 - 12\sqrt{10} + 8$ $= 53 - 12\sqrt{10}$

5 Simplify the following.

a $(\sqrt{3} + 6)^2$ **b** $(\sqrt{5} + \sqrt{2})^2$ c $(\sqrt{10} - \sqrt{5})^2$ e $(3\sqrt{7} - 2\sqrt{5})^2$ **f** $(\sqrt{11} - 5\sqrt{5})^2$ **d** $(2\sqrt{5}+3)^2$

6 Determine whether the following statements are true or false. Give reasons.

- **a** $4 \times 3\sqrt{5} = 12\sqrt{60}$
- c $2\sqrt{3}(3\sqrt{2} + \sqrt{3}) = 6\sqrt{6} + 6$
- e $(\sqrt{6} + 3)(2\sqrt{6} 5) = 3\sqrt{6} 2$
- **g** $(\sqrt{5} + \sqrt{7})(\sqrt{5} \sqrt{7}) = -24$
- i $(2\sqrt{7} \sqrt{10})^2 = 38 4\sqrt{70}$

b $\sqrt{7}(\sqrt{2}-3) = \sqrt{14}-3$ **d** $(3\sqrt{2} + 5\sqrt{3})(\sqrt{2} - \sqrt{3}) = -9 + 2\sqrt{6}$ **f** $(2\sqrt{5} - \sqrt{3})(2\sqrt{5} + \sqrt{3}) = 17$ **h** $(\sqrt{5} + \sqrt{3})^2 = 8$

Rationalising the denominator G

To rationalise the denominator of a fraction means to convert it to an equivalent fraction with a rational (non-surd) denominator.

Exercise 11G

1 Rationalise the denominator of each of the following.

11007 Photo of a person or hands trimming and loosening the roots of a root-bound plant lifted from a pot

Rationalise the a a $\frac{1}{4\sqrt{7}}$	denominator of each	of the following. b $\frac{5}{4\sqrt{7}}$	c $\frac{5\sqrt{3}}{4\sqrt{7}}$						
$\mathbf{a} \frac{1}{4\sqrt{7}} = \frac{1}{4\sqrt{7}}$ $= \frac{\sqrt{7}}{4\times}$		$\mathbf{b} \frac{5}{4\sqrt{7}} = \frac{5}{4\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}}$	$\mathbf{c} \frac{5\sqrt{3}}{4\sqrt{7}} = \frac{5\sqrt{3}}{4\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}}$						
$= \frac{1}{4 \times 1}$ $= \frac{\sqrt{7}}{28}$	7	$=rac{5\sqrt{7}}{28}$	$=\frac{5\sqrt{21}}{28}$						
2 Rationalise the c	2 Rationalise the denominator of each of the following.								
$\mathbf{a} \frac{1}{2\sqrt{3}}$	b $\frac{1}{3\sqrt{5}}$	c $\frac{4}{5\sqrt{2}}$	d $\frac{8}{3\sqrt{7}}$ e $\frac{\sqrt{5}}{3\sqrt{2}}$						
$\mathbf{f} \frac{\sqrt{10}}{4\sqrt{3}}$	$\mathbf{g} \frac{5\sqrt{7}}{3\sqrt{10}}$	h $\frac{6\sqrt{2}}{5\sqrt{3}}$	i $\frac{3\sqrt{5}}{2\sqrt{11}}$ j $\frac{2\sqrt{7}}{5\sqrt{6}}$						

Extension

EXAMPLE 3

- **a** Expand and simplify $(\sqrt{5} + \sqrt{3})(\sqrt{5} \sqrt{3})$.
- b Hence rationalise the denominator of each of the following.

a
$$(\sqrt{5} + \sqrt{3})(\sqrt{5} - \sqrt{3}) = 5$$
 $\sqrt{15} + \sqrt{15} - 3$
b i $\frac{1}{\sqrt{5} + \sqrt{3}} = \frac{1}{\sqrt{5} + \sqrt{3}} \times \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} - \sqrt{3}}$
 $= \frac{\sqrt{5} - \sqrt{3}}{2}$
ii $\frac{1}{\sqrt{5} - \sqrt{3}} = \frac{1}{\sqrt{5} - \sqrt{3}} \times \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} + \sqrt{3}}$
 $= \frac{\sqrt{5} + \sqrt{3}}{2}$

Remember: $(a + b)(a - b) = a^2 - b^2$.

PROOFS

 $\frac{1}{\sqrt{5} - \sqrt{3}}$

ii

(a - b) is called the **conjugate** of (a + b), and (a + b) is the conjugate of (a - b).

> 11008 Photo or drawing of Yin-yang symbol with + and - sign

.....

3 a Expand and simplify $(\sqrt{7} + \sqrt{2})(\sqrt{7} - \sqrt{2})$.

b Hence rationalise the denominator of each of the following.

i
$$\frac{1}{\sqrt{7} + \sqrt{2}}$$
 ii $\frac{1}{\sqrt{7} - \sqrt{2}}$

4 a Expand and simplify (√10 + √3)(√10 - √3).
b Hence rationalise the denominator of the following.

i
$$\frac{1}{\sqrt{10}} + \sqrt{3}$$
 ii $\frac{1}{\sqrt{10} - \sqrt{3}}$

- **5** a Expand and simplify $(\sqrt{5} + \sqrt{2})(\sqrt{5} \sqrt{2})$.
 - **b** Hence rationalise the denominator of each of the following.

i
$$\frac{1}{\sqrt{5}+2}$$
 ii $\frac{1}{\sqrt{5}-2}$

- **6** a Expand and simplify $(6 + \sqrt{3})(6 \sqrt{3})$.
 - **b** Hence rationalise the denominator of each of the following.

i
$$\frac{5}{6+\sqrt{3}}$$
 ii $\frac{10}{6-\sqrt{3}}$

- **a** Expand and simplify $(5\sqrt{2} + \sqrt{3})(5\sqrt{2} \sqrt{3})$.
- **b** Hence rationalise the denominator of each of the following.

i
$$\frac{\sqrt{6}}{5\sqrt{2} + \sqrt{3}}$$
 ii $\frac{2\sqrt{2} - \sqrt{3}}{5\sqrt{2} - \sqrt{3}}$

7 a Expand and simplify $(2\sqrt{3} + \sqrt{2})(2\sqrt{3} - \sqrt{2})$.

b Hence rationalise the denominator of each of the following.

i
$$\frac{\sqrt{5}}{2\sqrt{3} + \sqrt{2}}$$
 ii $\frac{\sqrt{7}}{2\sqrt{3} - \sqrt{2}}$

8 a Expand and simplify $(3\sqrt{2} + 5)(3\sqrt{2} - 5)$.

b Hence rationalise the denominator of each of the following.

i
$$\frac{\sqrt{2}+3}{3\sqrt{2}+5}$$
 ii $\frac{3\sqrt{2}-4}{3\sqrt{2}-5}$

9 Rationalise the denominator of each of the following.

a
$$\frac{1}{\sqrt{6}-2}$$

b $\frac{3}{\sqrt{10}+\sqrt{2}}$
c $\frac{\sqrt{5}+1}{\sqrt{3}-\sqrt{2}}$
d $\frac{\sqrt{10}-2}{\sqrt{10}+2}$
e $\frac{2\sqrt{2}-\sqrt{3}}{2\sqrt{2}+\sqrt{3}}$
f $\frac{2\sqrt{5}+3\sqrt{2}}{2\sqrt{5}-3\sqrt{2}}$

NUMBER & ALGEBRA

7 Write the following in index form.

a $(\sqrt{m})^5$ e $\sqrt[4]{10^3}$	b $\sqrt{m^5}$ f $(\sqrt[4]{10})^3$	c $(\sqrt{a})^5$ g $(\sqrt[7]{x})^n$	d $\sqrt{a^5}$ h $(\sqrt[n]{x})^7$
	AMPLE /		
Write the following $\mathbf{a} k^{\frac{3}{4}}$	ing in surd form.	b $w^{\frac{5}{3}}$	
a $k^{\frac{3}{4}} = (k^{\frac{1}{4}})^3$ o	r $(k^3)^{\frac{1}{4}}$	b $w^{\frac{5}{3}} = (w^{\frac{1}{3}})^5$ or $(w^{\frac{1}{3}})^5$	$(v^5)^{\frac{1}{3}}$

 $=(\sqrt[3]{w})^5$ or $\sqrt[3]{w^5}$

8	Write	the	fol	lowing	in	surd	form.
---	-------	-----	-----	--------	----	------	-------

a e $=(\sqrt[4]{k})^3$ or $\sqrt[4]{k^3}$

$k^{\frac{2}{3}}$	b	$m^{\frac{4}{3}}$	c	$t^{\frac{3}{2}}$	d	$a^{\frac{3}{5}}$
$17^{\frac{5}{6}}$	f	$25^{\frac{3}{4}}$	g	$x^{\frac{n}{5}}$	h	$x^{\frac{5}{n}}$

• EXAMPLE 8

10 Use your calculator to evaluate the following, correct to 2 decimal places where necessary.

a $61^{\frac{3}{2}}$ **b** $729^{\frac{4}{3}}$ **c** $16\ 807^{\frac{3}{5}}$ **d** $298^{\frac{3}{4}}$ **e** $1024^{\frac{13}{10}}$

11009 Photo of students using a calculator to work out fractional indices

Some properties of real numbers

Exercise 11I

- 1 Use the fraction key on your calculator to evaluate (as fractions) the following. **b** $\left(\frac{6}{5}\right)^{-1}$ $\left(\frac{9}{7}\right)^{-1}$ a $\left(\frac{5}{2}\right)^{-}$ d $\left(\frac{2}{3}\right)^{-}$ e $\left(\frac{3}{4}\right)^{-1}$ 2 Show that $\left(\frac{a}{b}\right)^{-1} = \frac{b}{a}$. 3 If a and b are real numbers, determine whether the following A counter example is an example that demonstrates the statement is false. statements are true or false. If false, give a counter example. (*Hint:* Try several different pairs of real numbers to test the truth of the statements.) **a** i a + b is a real number. ii a - b is a real number. iii $a \times b$ is a real number. iv $a \div b$ is a real number. i a + b = b + a**ii** a - b = b - ab iii $a \times b = b \times a$ iv $a \div b = b \div a$ ii (a - b) - c = a - (b - c)i (a + b) + c = a + (b + c)iii $(a \times b) \times c = a \times (b \times c)$ iv $(a \div b) \div c = a \div b$ **ii** a + 0 = a $\mathbf{i} a \times 0 = 0$ d ii $a \div a$ $i a \times 1 = a$ е 4 If m and n are rational numbers, determine whether the following statements are true or false. If false give a counter example. m - n is always rational. **a** m + n is always rational. c $m \times n$ is always rational. **d** $m \div n$ is always rational. 5 Find a pair of surds that setisfy each condition. Remember: a The product of the suras is irrational. \times gives product. ÷ gives quotient. **b** The product of the surds is rational. The quotient of the surds is irrational. С **d** The quotient of the surds is rational. **a** Write three **consecutive** integers starting with *y*. 6 Consecutive means in order and without gaps. **b** Hence show that the sum of any three consecutive integers is divisible by 3. 7 a Show that any even real number can be written in the form 2k, where k is an integer. **b** Show that any odd real number can be written in the form 2k + 1, where k is an integer. c Hence prove the following properties of real numbers. i The sum of any two even numbers is even. ii The sum of any two odd numbers is even. iii The sum of an even number and an odd number is odd. iv The product of two even numbers is even.
 - **v** The product of an odd number and an even number is even.
 - vi The product of two odd numbers is odd.

NUMBER & ALGEBRA

Language in mathematics

1 Which of the following statements is *not* correct?

3 Which of the following is *not* a rational number?

B $\frac{103}{300}$

B $\sqrt{\frac{9}{16}}$

A the square root of 25 is 5 or -5

2 Convert $0.\dot{3}\dot{1}\dot{2}$ to a fraction.

 $\mathbf{A} \ \frac{78}{25}$

A $\sqrt{17}$

1	1 a Explain, in words, how to calculate:							
	· · · · · ·						ot of a number.	
	b	Write dow						
		i square				quare root(s		
			•	ers are perfect squa	ares: 1, 4, 1	2, 25, 27, 20	00?	
	d	Write in w					1	
		$i m^2$	ii r	\sqrt{m}	iii -	$-\sqrt{m}$	iv $m^{\frac{1}{2}}$	
2	W	hat is a:						
	a	real number	er?	b rational nu	mber?		c irrational numb	er?
•	* *	1 0			•			
3	Us			complete the follow	-	nents.		
	-			ionalising, recurrin	•	4		
		-		expressed as a			1 41 1	
	b			of a fraction into a i		nber is calle	a the denom	linator.
	c d		•	called the single that demonstrations and the second	-	totomontia		
	u	A counter	example is an exam	ipie tilat demonstra	ites that a si			
4	W	rite down an	n example of three	consecutive integer	s.	PR ⁰	F3	
5		Find the or	im and the product	of 5 and 0		20	0.	
3			e quotient when 13			ph		
			-	-	~GK			
6	Us	se a dictiona	ry to write down tw	wo meanings of eac	b vord.			
	a	general		b property		(e index	
7	Tł	ree of the v	vords in the followi	ng list have been sp	oelt incorre	ctly. Rewrite	e them with the cor	rect spelling.
Ĩ			urt, indixes recur,			••••)• = = ••••		
		,	10^{10}	, ,				
Te	ern	ns 🚽	NN,					
ap	pro	ximation	binomial expansion	on	conjugate		consecutive	convert
-	unt		example	denominator	distributiv		dot notation	expansion
fra	icti	onal	general	index law	indices		integer	irrational
lik	e s	urds	perfect square	power	product		property	quotient
rae	lica	al sign	ratio	rational	rationalise	e	real number	recurring
sq	uar	e	square root	surd	terminatir	ıg	undefined	
ſ	Check your skills							
		oon yo u						

B $\sqrt{25} = 5$ **C** $-\sqrt{25} = -5$ **D** $\sqrt{-25} = -5$

C $\frac{39}{125}$

C $3\frac{3}{4}$

D $\frac{103}{330}$

D -21

4	$(2\sqrt{3})^2 =$ A 12	B 36	C 6	D $\sqrt{6}$
5	In simplest form, $\sqrt{80} = $ A $10\sqrt{8}$	B $8\sqrt{10}$	\mathbf{C} $2\sqrt{20}$	D $4\sqrt{5}$
6	Written in the form \sqrt{n} , 2 A $\sqrt{14}$	$\sqrt{7} =$ B $\sqrt{28}$	C $\sqrt{98}$	D √196
7	$\frac{\sqrt{50}}{\sqrt{5}} =$ A 10	B $\sqrt{10}$	$C 2\sqrt{5}$	D $5\sqrt{2}$
8	$\sqrt{9\frac{1}{4}} =$		0 210	
	$\mathbf{A} \ \frac{\sqrt{37}}{2}$	B $3\frac{1}{2}$	C $3\frac{1}{4}$	D $9\frac{1}{2}$
	$6\sqrt{5} - 2\sqrt{3} + 3\sqrt{5} =$ A $7\sqrt{7}$	B $9\sqrt{5} - 2\sqrt{3}$	\mathbf{C} $7\sqrt{2}$	D $4\sqrt{2} + 3\sqrt{5}$
10	$\sqrt{12} + \sqrt{27} =$ A $\sqrt{39}$	B $5\sqrt{3}$	C 5√6 5 PRO	D $3\sqrt{5}$
11	$4\sqrt{3} \times 5\sqrt{2} =$ A $20\sqrt{6}$	B 60√2	SV24	D 120
12	$\sqrt{5}(3\sqrt{2} - 3) =$ A $3\sqrt{10} - 3$	B $9\sqrt{5} - 2\sqrt{3}$ B $5\sqrt{3}$ B $60\sqrt{2}$ B $\sqrt{20} \sqrt{15}$ B $2\sqrt{6} - 4\sqrt{2}$ B 25	C $3\sqrt{10} - \sqrt{15}$	D $3\sqrt{10} - 3\sqrt{5}$
13	$(\sqrt{6} - 2\sqrt{6})(\sqrt{6} + 2\sqrt{2})$ A 20	B $2\sqrt{6} - 4\sqrt{2}$	C $-2 - 8\sqrt{3}$	D -2
14	$(\sqrt{7} - \sqrt{2})^2 =$ A 5	B 25	C 5 – $2\sqrt{14}$	D 9 – $2\sqrt{14}$
15	Expressed with a rational	denominator, $\frac{3\sqrt{2}}{2\sqrt{5}} =$		
	$\mathbf{A} \frac{3\sqrt{2}}{10}$	$\mathbf{B} \ \frac{3\sqrt{2}}{5}$	C $\frac{3\sqrt{10}}{10}$	$\mathbf{D} \ \frac{6}{2\sqrt{10}}$
16	$12^{\frac{1}{2}} =$ A 6	B $\frac{1}{6}$	\mathbf{C} $\sqrt{12}$	D $\frac{1}{144}$
17	In index form, $\sqrt[3]{k^4} = \mathbf{A} \ k^{12}$	B $k^{\frac{4}{3}}$	C $k^{\frac{3}{4}}$	D k^{-1}
18	When evaluated, $16^{\frac{3}{4}} =$ A 12	B $21\frac{1}{3}$	C 8	D $\frac{1}{8}$

19 $\left(\frac{4}{3}\right)^{-1} =$			
$\mathbf{A} -\frac{4}{3}$	B $\frac{1}{12}$	C $\frac{3}{4}$	D $-\frac{3}{4}$

If you have any difficulty with these questions, refer to the examples and questions in the sections listed in the table.

Question	1	2	3	4–8	9, 10	11–14	15	16–18	19
Section	А	В	С	D	Е	F	G	Н	Ι

11A Review set

1	Find the following, where possible. a Square root of 16	b $\sqrt{16}$	c $-\sqrt{16}$	d $\sqrt{-16}$	$\mathbf{e} \sqrt{0}$
2	Convert the following rational numbers $\mathbf{a} = \frac{3}{8}$ b 23%	bers to decimals.	c $\frac{1}{3}$	d	$3\frac{1}{2}$
3	Show that the following are rational a $3\frac{1}{4}$ b 5		0.083		0.5
4	Determine whether the following re	al numbers are rat	tional or irrou soai.	50	
	a -3 b $\sqrt{5}$	c √9	$d \sqrt{\frac{3}{4}}$		e $\sqrt{\frac{16}{9}}$
5	Simplify the following. a $(\sqrt{2})^2$ b $(5\sqrt{2})$	² CTED ¹	tional or irr. no. ai. d $\sqrt{\frac{3}{4}}$ c $\sqrt{6} \times \sqrt{7}$	d	$3\sqrt{5} \times 2\sqrt{7}$
6	Express the following in simplest for $a \sqrt{18}$ $b \sqrt{20}$	orm.	c $\sqrt{3} \times \sqrt{12}$	d	$\sqrt{8} \times \sqrt{3}$
7	Express the following in the form $$	\overline{n} .			
	a $2\sqrt{5}$		b $5\sqrt{2}$		
8	Simplify the following.				
	a $\sqrt{\frac{16}{25}}$ b $\sqrt{\frac{17}{25}}$		c $\sqrt{2\frac{1}{4}}$	d	$\sqrt{1\frac{4}{9}}$
	e $\frac{\sqrt{15}}{\sqrt{3}}$ f $\frac{\sqrt{20}}{\sqrt{5}}$		$\mathbf{g} \frac{\sqrt{24}}{\sqrt{3}}$	h	$\frac{\sqrt{21}}{\sqrt{3}}$
9	Write true or false.				
	a $\sqrt{7^2} = 7$	b $3\sqrt{5} = \sqrt{15}$		c $\sqrt{45} =$	$5\sqrt{3}$
	d $\sqrt{2} \times \sqrt{32} = 8$	$e \frac{\sqrt{20}}{2} = \sqrt{5}$		$\mathbf{f} \sqrt{4\frac{1}{4}} = 1$	$2\frac{1}{2}$
10	Simplify the following. a $5\sqrt{3} + 7\sqrt{3} - 2\sqrt{3}$ b $8\sqrt{2}$	$-6\sqrt{6}+4\sqrt{6}$	c $\sqrt{50} - \sqrt{18}$	d	$2\sqrt{5} + \sqrt{20}$
11	Write true or false. a $\sqrt{6} + \sqrt{3} = \sqrt{9}$	b $\sqrt{27} - \sqrt{6} =$	÷ √21	c $5\sqrt{7}$ –	$4\sqrt{7} = \sqrt{7}$

12	Simplify the following. a $2\sqrt{8} \times 5\sqrt{2}$ d $\sqrt{5}(\sqrt{7} + \sqrt{2})$ g $(\sqrt{6} + 3)(\sqrt{6} - 3)$	b $6\sqrt{8} \times 2\sqrt{3}$ e $3\sqrt{2}(2\sqrt{5} - 1)$ h $(3\sqrt{7} + 4)^2$	3√3)	c $4 \times 5\sqrt{10}$ f $(\sqrt{3} + 2\sqrt{2})(2\sqrt{3} - \sqrt{2})$	
13	Rationalise the denominator a $\frac{1}{\sqrt{10}}$		b $\frac{\sqrt{3}}{2\sqrt{10}}$		
14	 a Expand and simplify (√2 b Hence rationalise the dem 		2,10		
15	Write each of the following	12 1 1	c $k^{\frac{3}{4}}$	d $k^{\frac{2}{3}}$	
16	Write the following in index a \sqrt{z} b	form. ∛√	c $\sqrt{m^5}$	d $\sqrt[3]{y^2}$	
17	Evaluate the following. a $4^{\frac{5}{2}}$ b	$25^{\frac{1}{2}}$	c $8^{\frac{4}{3}}$	d $343^{\frac{2}{3}}$	
18	Write $\left(\frac{5}{4}\right)^{-1}$ as a fraction.			a 343 ³	
	11B Review set		PAGE		
1	Find the following where por a Square root of 36	b $\sqrt{36}$		d $\sqrt{-36}$ e $\sqrt{0}$	
2	Convert the following ration a $\frac{5}{8}$	al numbers to decimals. 49%	c $\frac{2}{3}$	d $4\frac{1}{2}$	
3	Show that the following are a $3\frac{1}{3}$ b	rational numbers, by exp 4	c 0.27	form $\frac{a}{b}$. d $0.\dot{3}$	
4	Determine whether the follow a -5.2 b $\sqrt{7}$	wing real numbers are raccondition $c \sqrt{36}$	tional or irrational. d $\sqrt{\frac{5}{8}}$	e $\sqrt{\frac{16}{9}}$	
5	Simplify the following. a $(\sqrt{3})^2$ b	$(5\sqrt{3})^2$	c $\sqrt{5} \times \sqrt{6}$	d $2\sqrt{7} \times 6\sqrt{2}$	
6	Express the following in sime $\mathbf{a} \sqrt{8}$ b	plest form. $\sqrt{45}$	c $\sqrt{8} \times \sqrt{2}$	d $\sqrt{8} \times \sqrt{6}$	
7	Express the following in the a $2\sqrt{7}$	form \sqrt{n} .	b $4\sqrt{3}$		
8	Simplify the following. a $\sqrt{\frac{9}{4}}$ b	$\sqrt{\frac{11}{4}}$	c $\sqrt{1\frac{7}{9}}$	d $\sqrt{3\frac{1}{4}}$	
	$e \frac{\sqrt{18}}{\sqrt{6}} \qquad \qquad \mathbf{f}$	$\frac{\sqrt{24}}{\sqrt{6}}$	$\mathbf{g} \frac{\sqrt{24}}{\sqrt{2}}$	h $\frac{\sqrt{45}}{\sqrt{5}}$	

NUMBER & ALGEBRA

9	Write true or false. a $\sqrt{10^2} = 10$ d $\sqrt{2} \times \sqrt{18} = 6$	b $5\sqrt{3} = \sqrt{15}$ e $\frac{\sqrt{20}}{4} = \sqrt{5}$		c $\sqrt{54} = 6\sqrt{3}$ f $\sqrt{9\frac{1}{4}} = 3\frac{1}{2}$
10	Simplify the following. a $4\sqrt{2} + 5\sqrt{2} - 10\sqrt{2}$ c $\sqrt{45} - \sqrt{20}$	4	b $5\sqrt{3} - 6\sqrt{5} - 4$ d $3\sqrt{6} + \sqrt{24}$	
11	Write true or false. a $\sqrt{7} + \sqrt{5} = \sqrt{12}$ c $6\sqrt{6} - 5\sqrt{6} = 1$		b $\sqrt{27} - \sqrt{12} = \sqrt{10}$ d $\sqrt{20} - \sqrt{10} = \sqrt{10}$	
12	Simplify the following. a $2\sqrt{12} \times 5\sqrt{3}$ d $\sqrt{3}(\sqrt{10} - \sqrt{3})$ g $(\sqrt{10} - \sqrt{6})(\sqrt{10} + \sqrt{6})$	b $4\sqrt{6} \times 2\sqrt{3}$ e $2\sqrt{5}(2\sqrt{3} - 3)$ h $(2\sqrt{6} - 5)^2$	3√5)	c $3 \times 7\sqrt{2}$ f $(\sqrt{7} + \sqrt{3})(\sqrt{7} - 2\sqrt{3})$
	Rationalise the denominator of: a $\frac{1}{\sqrt{5}}$		b $\frac{\sqrt{2}}{3\sqrt{5}}$	-6
14	 a Expand and simplify (√5 + √2) b Hence rationalise the denominate 	$(\sqrt{5} - \sqrt{2}).$ or of $\frac{1}{\sqrt{5}}$.	PR	0 ^{F5}
15	a $\sqrt{5}$ a Expand and simplify $(\sqrt{5} + \sqrt{2})$ b Hence rationalise the denominate Write each of the following as a sur- a $n^{\frac{1}{2}}$ b $n^{\frac{1}{4}}$ Write the following in index form. a \sqrt{m} b $\sqrt[3]{w}$ Evaluate the following. a $8^{\frac{1}{3}}$ b $49^{\frac{1}{2}}$	$\sqrt{5} - \sqrt{2}$ d.	$c n^{\frac{4}{3}}$	d $n^{\frac{3}{5}}$
16	Write the following in index form. a \sqrt{m}	C	c $\sqrt{t^3}$	d $\sqrt[4]{y^3}$
17	Evaluate the following. a $8^{\frac{1}{3}}$ b $49^{\frac{1}{2}}$		c $16^{\frac{3}{4}}$	d $324^{\frac{3}{2}}$
18	Write $\left(\frac{3}{5}\right)^{-1}$ as a fraction.			
	11C Review set			
1	Find the following where possible. a Square root of 9 b	√9 c	$-\sqrt{9}$	d $\sqrt{-9}$ e $\sqrt{0}$
2	Convert the following rational numbers $\mathbf{a} \frac{1}{8} \qquad \mathbf{b} 137\%$		c $\frac{5}{9}$	d $5\frac{2}{3}$
3	Show that the following are rational a $1\frac{7}{8}$ b 2	numbers by expr	essing them in the force 0.314	orm $\frac{a}{b}$. d 0.6
4	Determine whether the following real $a -17$ b $\sqrt{11}$	al numbers are raccondition $c \sqrt{100}$	tional or irrational. d $\sqrt{\frac{7}{9}}$	e $\sqrt{\frac{16}{25}}$

5	Simplify the following. a $(\sqrt{7})^2$	b $(2\sqrt{7})^2$	c	$\sqrt{5} \times \sqrt{11}$		d $3\sqrt{6} \times 2\sqrt{5}$
6	Express the following in a $\sqrt{60}$	simplest form. b $\sqrt{54}$	c	$\sqrt{20} imes \sqrt{5}$		d $\sqrt{24} \times \sqrt{2}$
7	Express the following in $\frac{1}{2}$	the form \sqrt{n} .	b	3√7		
8	Simplify the following. a $\sqrt{\frac{9}{16}}$	b $\sqrt{\frac{17}{16}}$	c	$\sqrt{1\frac{9}{16}}$		d $\sqrt{1\frac{5}{16}}$
	$e \frac{\sqrt{30}}{\sqrt{10}}$	$\mathbf{f} \frac{\sqrt{27}}{\sqrt{3}}$	g	$\frac{\sqrt{48}}{\sqrt{6}}$		h $\frac{\sqrt{60}}{\sqrt{5}}$
9	Write true or false. a $\sqrt{3^2} = 3$ d $\sqrt{27} \times \sqrt{3} = 9$	b $4\sqrt{3} = \sqrt{12}$ e $\frac{\sqrt{40}}{4} = \sqrt{10}$			c $\sqrt{63}$ f $\sqrt{1\frac{4}{9}}$	
10		b $6\sqrt{3} - 5\sqrt{3} + 2\sqrt{7}$				5
11	Write true or false. a $\sqrt{10} + \sqrt{10} = \sqrt{20}$	b $\sqrt{12} - \sqrt{3} = 3$ b $4\sqrt{8} \times 2\sqrt{5}$	c	$9\sqrt{5} - 8\sqrt{5} = 1$	RO	d $\sqrt{3} \neq \sqrt{27}$ d $\sqrt{28} - 2\sqrt{7} = 2\sqrt{7}$
12	Simplify the following. a $2\sqrt{8} \times 5\sqrt{8}$ d $\sqrt{3}(\sqrt{6} + \sqrt{5})$ g $(\sqrt{5} + 3\sqrt{7})(\sqrt{5} - 3\sqrt{7})$	$e^{-5\sqrt{2}(3)/5} = 1$	ZVZ		c $3 \times$ f $(\sqrt{10})$	$2\sqrt{7}$ $(\overline{0} + 5)(\sqrt{10} - 6)$
13	Rationalise the denomina a $\frac{1}{\sqrt{7}}$	tor of the following	b	$\frac{\sqrt{2}}{3\sqrt{7}}$		
14	a Expand and simplify (b Hence rationalise the 					
15	Write each of the following a $w^{\frac{1}{3}}$	ng as a surd. b $w^{\frac{1}{6}}$	c	$w^{\frac{3}{2}}$		d $w^{\frac{2}{3}}$
16	Write the following in ind a \sqrt{n}	dex form. b $\sqrt[4]{z}$	c	$\sqrt[3]{n^2}$		d $(\sqrt{m^2})^2$
17	Evaluate the following. a $16^{\frac{1}{2}}$	b $25^{\frac{3}{2}}$	c	9261 ⁴ / ₃		d $1296^{\frac{3}{4}}$
18	Write $\left(\frac{3}{8}\right)^{-1}$ as a fraction.					